ASSESSMENT and

Mark scheme January 2004

GCE

Physics B

Unit PHB4

Copyright © 2004 AQA and its licensors. All rights reserved.

Marking Scheme

NOTES FOR GUIDANCE

Letters are used to distinguish between different types of marks in the scheme.
M indicates OBLIGATORY METHOD MARK
This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK
This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK
These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK

This is a mark which is independent of M and C marks.
Note: Where a correct answer only (c.a.o.) is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.

Where an error carried forward (e.c.f.) is allowed by the Marking Scheme for an incorrect answer, e.c.f. must be written on the script if an error has been carried forward.

Instructions to Examiners

1 Give due credit to alternative treatments which are correct. Give marks for what is correct; do not deduct marks because the attempt falls short of some ideal answer. Where marks are to be deducted for particular errors specific instructions are given in the marking scheme.

2 Do not deduct marks for poor written communication. Refer the script to the Awards meeting if poor presentation forbids a proper assessment. In each paper candidates may be awarded up to two marks for the Quality of Written Communication in cases of required explanation or description. Use the following criteria to award marks:

2 marks: Candidates write legibly with accurate spelling, grammar and punctuation; the answer containing information that bears some relevance to the question and being organised clearly and coherently. The vocabulary should be appropriate to the topic being examined.

1 mark: Candidates write with reasonably accurate spelling, grammar and punctuation; the answer containing some information that bears some relevance to the question and being reasonably well organised. Some of the vocabulary should be appropriate to the topic being examined.

0 marks: Candidates who fail to reach the threshold for the award of one mark.
3 An arithmetical error in an answer should be marked AE thus causing the candidate to lose one mark. The candidate's incorrect value should be carried through all subsequent calculations for the question and, if there are no subsequent errors, the candidate can score all remaining marks (indicated by ticks). These subsequent ticks should be marked CE (consequential error).

4 With regard to incorrect use of significant figures, normally two, three or four significant figures will be acceptable. Exceptions to this rule occur if the data in the question is given to, for example, five significant figures as in values of wavelength or frequency in questions dealing with the Doppler effect, or in atomic data. In these cases up to two further significant figures will be acceptable. The maximum penalty for an error in significant figures is one mark per paper. When the penalty is imposed, indicate the error in the script by SF and, in addition, write SF opposite the mark for that question on the front cover of the paper to obviate imposing the penalty more than once per paper.

5 No penalties should be imposed for incorrect or omitted units at intermediate stages in a calculation or which are contained in brackets in the marking scheme. Penalties for unit errors (incorrect or omitted units) are imposed only at the stage when the final answer to a calculation is considered. The maximum penalty is one mark per question.

6 All other procedures, including the entering of marks, transferring marks to the front cover and referrals of scripts (other than those mentioned above) will be clarified at the standardising meeting of examiners.

PHB4

Question 1

(a) acceleration/force is directed toward
a (fixed) point/the centre/the equilibrium position
or
$a=-k x+{ }^{\prime}-$ ' means that a is opposite direction to x
acceleration/force is proportional to the distance from the
B1 2 point/displacement
or
$a=-k x$ where $a=$ acceleration; $x=$ displacement and k is constant
(b) (i) $3.2=2 \pi \sqrt{ } / / 9.8$ (condone use of $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ for C mark)
(use of $a=-\omega^{2} x$ is a PE so no marks)
2.5(4) m

A1 2
(ii) Correct value at 0.5 m and correct curvature M1

Energy at $1 \mathrm{~m}=160 \mathrm{~J}$
A1 26

Question 2

(a) below yield stress material behaves elastically B1 or returns to original length when forces are removed above the yield stress: (condone 'at the yield stress') B1 material behaves plastically/is permanently deformed/is ductile
extends considerably/has large strain/extension B1
for very small increases in stress/force
B1

Max 2

(b) (i) Strain $=3.33 \times 10^{-4}$ or $\frac{1.5 \times 10^{-3}}{4.5}$ seen

$$
\begin{aligned}
& E=\text { stress } / \text { strain } \text { and } \text { stress }=F / A \\
& \text { or } E=F l / A \Delta l
\end{aligned}
$$

$$
\begin{equation*}
A=2.8 \times 10^{-4} \mathrm{~m}^{2} \text { or } \frac{\pi(0.0019)^{2}}{4} \text { or } \pi\left(9.5 \times 10^{-3}\right)^{2} \text { seen } \tag{C1}
\end{equation*}
$$

Stress $=7.0 \times 10^{7} \mathrm{~Pa}$
C1
2 max for C marks
Force $=19.6$ to $19.8(20) \mathrm{kN} \quad$ A1 3
(ii) Strain energy $=1 / 2 F \Delta l$ or $1 / 2$ their (b)(i) $\times\left(1.5 \times 10^{-3}\right)$

C1 condone incorrect power or no 10^{-3} for C mark or $1 / 2 \sigma \varepsilon \times$ volume
14.6 to14.9 (15) J (e.c.f.)

A1 27

Question 3

(a) momentum before (a collision) = momentum after (the collision)
total (resultant) momentum constant or momentum of system is constant
allow $m_{1} v_{1}+m_{2} v_{2}=$ etc
or reference to isolated/closed system or that no external forces act
resultant/total/sum of momentum of a system is constant/same
before and after a collision/interaction
provided no external forces act/in an isolated system
(b) (i) \quad impulse $=F t$; or $I=$ area under graph (condone $1 / 2 F t$) or clear attempt to multiply a force by a time e.g. multiplies 1.8 by 0.15
0.135 (0.14) Ns or $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$
(ii) impulse $=$ change in momentum or $0.135=m x 0.6$
(condone $F t=m v$)
$0.225 / 0.233(0.23) \mathrm{kg} \quad(e c f$ from (b)(i))
(iii) $0 \quad$ (no unit penalty)

B1 17

Question 4

(a) (i) Energy $=1 / 2 C V^{2}$ or $1 / 2 Q V$ and $Q=V C \quad \mathrm{C} 1$

Calculation initial or final energy correctly
(0.202 J or 0.0625 J)
or energy $=1 / 2\left(20000 \times 10^{-6}\left(4.5^{2}-2.5^{2}\right)\right.$
condone no or incorrect power of 10
0.137 to 0.140 J

A1 3
(ii) $\quad \mathrm{PE}=0.015 \times 9.8 \times 0.35(0.0515)(0.052 \mathrm{~J})$ C1or arrives at 0.368 or 0.371
36 to 38 (36.8 (37) \% is correct) A1 2(ecf $0.052 \times 100 /$ their (a)(i)) (penalise use of 0.05 J)
(iii) heating/energy loss due to resistance of wires B1
work done against friction B1allow energy/heat loss due to friction
work done against air resistance due to motion of the B1 masssound energy due to vibrations of the motorB1
Max 2(b) (i) \quad Power $=$ work done/time (W / t or E / t)C1or work done $=$ their PE from (a)(ii)/1.3or power $=0.14 / 1.3$ (i.e. use of input energy from (a)(i))40 (39.6) mWA1 2
(ii) $\quad V=V_{\mathrm{o}} \mathrm{e}^{-\mathrm{t} / R C}$ or $Q=Q_{\mathrm{o}} \mathrm{e}^{\mathrm{t} / R C}$ and $Q=V C$ C1
$2.5=4.5 \mathrm{e}^{-1.3 / 0.02 R}$ (ignore incorrect power of 10 for C in C1 substitution)
111 (110) Ω
A1 3
Allow B1 for realising $0.69 C R \approx 1.3$ leading to 94Ω12

Question 5

Question 6

(a)
(i) $\quad F=m r \omega^{2}$ or $m v^{2} / r$ and $v=r \omega$
$\omega=2 \pi f\left(40.8 \mathrm{rad} \mathrm{s}^{-1}\right)$
C1
6.2 to 6.3 N
A1 3
(ii) arrow shown at tangent to circular path
B1 1
(b) ' - sin' shape graph drawn and 1 cycle \quad B1
period 0.15 s or $1 / 6.5$ or $2 / 13$ used as labels correctly 2
(c) a forced oscillation occurs :

B1
when a body is subject to a periodic force
or a body/oscillator is made to oscillate/vibrate by another oscillator/frequency
OWTTE
as speed increases there is an increase in the frequency of the periodic force/the vibrations from the wheel
as speed/frequency of the 'driver' increases the frequency of the
forced oscillations increases
or
frequency of driver/vibrations from wheel = frequency of driven/mirror
resonance occurs at natural frequency
or resonance occurs when the forcing frequency $=$ natural frequency
amplitude reaches a maximum or amplitude increase greatly when frequency of rotation of the wheel is 6.5 rev.p s or frequency of the force is 6.5 Hz or when resonant frequency is reached
above this frequency/speed the amplitude falls again
B1
last two marks may be awarded for a well drawn and clearly
labelled amplitude-frequency graph
last mark may be awarded for an amplitude-speed graph
At least 2 marks for physics + use of Physics is accurate, the
answer is fluent/well argued with few errors in spelling, punctuation and grammar

At least 1 mark for physics + the use of Physics is accurate,
Max 1
7 grammar are poor
the use of Physics is inaccurate, the answer is disjointed, with
0 significant errors in spelling, punctuation and grammar

Question 7

(a) (i) An electron moves from a higher level to a lower level

C1
(An electron) falls/moves/drops from- $2.43 \times 10^{-19} \mathrm{~J}$ to $-3.0 \times 10^{-19} \mathrm{~J}$ levels
(ii) $E=h f$ and $c=f \lambda$ or $E=h c / \lambda$
correct substitution of data
(allow ecf from (i) for incorrect levels or level value) or $f=8.64 \times 10^{13} \mathrm{~Hz}$
(3.47 to 3.49) $\times 10^{-6} \mathrm{~m}$ or $3.5 \times 10^{-6} \mathrm{~m} \quad$ (cao)
(i) an atom/electron stays in a metastable/excited state for a longer time or relatively long time
or metastable state has a longer lifetime than other (excited) states
or stated times (e.g. $10^{-3} \mathrm{~s}$ compared with $10^{-8} \mathrm{~s}$)
(ii) Vague answer
e.g. More electrons in higher level than in a lower level (condone ground state)
or
diagram that gives reasonable view of population inversion
there are more atoms:
with electrons in a higher energy level than in a lower level
in a metastable state than in a lower state in an excited state than in a lower state

C1
A1 2

C1
C1

A1 3
B1 1

A1 2

8

Question 8

(a) occurs when electromagnetic radiation/photons is/are incident
on a surface/plate/named metal/cathode
electrons are emitted/ejected from the surface
A1 2
(b) Diagram of suitable apparatus which will work

B1 1
e.g. electroscope with zinc plate or photocell with electrometer Procedure and observations
For electroscope experiment
e.g. Charge electroscope negatively

B1
illuminate with visible light(low f) - no effect B1
illuminate with uv radiation (high f) - leaves collapse B1

$$
\begin{array}{ll}
\text { increase intensity with visible light has no effect } & \text { B1 } \\
\text { low intensity uv discharges electroscope } & \text { B1 } \\
\text { discharge begins instantly } & \text { B1 }
\end{array}
$$

Max 3
For photocell
e.g. polarity correct for approach used B1
illuminate with visible light (low f) - no current B1
illuminate with uv radiation (high f) - current B1
or
with uv a larger back off voltage is needed B1
to reduce current to zero B1
increase intensity with visible light -no effect B1low intensity uv current observed.current begins instantly

Why this suggests particle nature
e.g. with waves energy arriving all the time whatever the wavelength
emission would be expected at all wavelengths /frequencies
or
with particles no emission unless the particle has enough energy
or there is a threshold frequency/different frequency needed to emit electrons for different metals photon/particle energy is wavelength/frequency dependent
or
with waves would expect a delay for low intensity expect energy build up and quicker emission for high intensity waves
or
provided particle have enough energy
emission starts as soon as a particle arrives at the surface

At least 2 marks for physics + use of Physics is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar

At least 1 mark for physics + the use of Physics is accurate, but the answer lacks coherence or spelling, punctuation and grammar are poor
the use of Physics is inaccurate, the answer is disjointed, with significant errors in spelling, punctuation and grammar

