ASSESSMENT and

Mark scheme January 2004

GCE

Physics B

Unit PHB2

Copyright © 2004 AQA and its licensors. All rights reserved.

Marking Scheme

NOTES FOR GUIDANCE

Letters are used to distinguish between different types of marks in the scheme.
M indicates OBLIGATORY METHOD MARK
This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK
This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK
These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK

This is a mark which is independent of M and C marks.
Note: Where a correct answer only (c.a.o.) is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.

Where an error carried forward (e.c.f.) is allowed by the Marking Scheme for an incorrect answer, e.c.f. must be written on the script if an error has been carried forward.

Instructions to Examiners

1 Give due credit to alternative treatments which are correct. Give marks for what is correct; do not deduct marks because the attempt falls short of some ideal answer. Where marks are to be deducted for particular errors specific instructions are given in the marking scheme.

2 Do not deduct marks for poor written communication. Refer the script to the Awards meeting if poor presentation forbids a proper assessment. In each paper candidates may be awarded up to two marks for the Quality of Written Communication in cases of required explanation or description. Use the following criteria to award marks:

2 marks: Candidates write legibly with accurate spelling, grammar and punctuation; the answer containing information that bears some relevance to the question and being organised clearly and coherently. The vocabulary should be appropriate to the topic being examined.

1 mark: Candidates write with reasonably accurate spelling, grammar and punctuation; the answer containing some information that bears some relevance to the question and being reasonably well organised. Some of the vocabulary should be appropriate to the topic being examined.

0 marks: Candidates who fail to reach the threshold for the award of one mark.
3 An arithmetical error in an answer should be marked AE thus causing the candidate to lose one mark. The candidate's incorrect value should be carried through all subsequent calculations for the question and, if there are no subsequent errors, the candidate can score all remaining marks (indicated by ticks). These subsequent ticks should be marked CE (consequential error).

4 With regard to incorrect use of significant figures, normally two, three or four significant figures will be acceptable. Exceptions to this rule occur if the data in the question is given to, for example, five significant figures as in values of wavelength or frequency in questions dealing with the Doppler effect, or in atomic data. In these cases up to two further significant figures will be acceptable. The maximum penalty for an error in significant figures is one mark per paper. When the penalty is imposed, indicate the error in the script by SF and, in addition, write SF opposite the mark for that question on the front cover of the paper to obviate imposing the penalty more than once per paper.

5 No penalties should be imposed for incorrect or omitted units at intermediate stages in a calculation or which are contained in brackets in the marking scheme. Penalties for unit errors (incorrect or omitted units) are imposed only at the stage when the final answer to a calculation is considered. The maximum penalty is one mark per question.

6 All other procedures, including the entering of marks, transferring marks to the front cover and referrals of scripts (other than those mentioned above) will be clarified at the standardising meeting of examiners.

PHB2

Section A

Question 1

(a) A
B1
(b) D
B1 2

Question 2

(a) Three quarks mentioned; at least one u, one d udd A1 2
(b) hadron

B1
baryon
B1 2

Question 3

Two of
B1
$\begin{array}{ll}\text { Mass or mass/unit length } & \text { B1 }\end{array}$
Tension
Length
Temperature

Question 4

use of r^{2}
C1
$P=1.4 \times 10^{3} \times 4 \times 3.14 \times\left(1.5 \times 10^{11}\right)^{2}$
$=3.96 \times 10^{26} \mathrm{~W}$
C1
A1 3

Question 5

Anti-neutrino indicated appropriately	B1
Beta 0, and -1	B1
$\mathrm{Tl} \mathrm{81} \mathrm{Pb} \mathbf{2 0 8}$	B1 $\mathbf{3}$

Question 6

(a) (i) continuous range of frequencies not discrete frequency
(ii) glowing/incandescent/white hot body /example of same
(b) absorption OWTTE \quad B

absence of light at dark line
correct reason

Question 7

(a) Constant/zero phase difference/in phase

B1 same frequency/wavelength

B1 2
(b) (i) mention of interference
describes constructive interference OR destructive A1 interference OR discusses path difference
(ii) $[\lambda D / d]$ $0.77 * 65 / 8.5$
$=5.9[5.89]$
$=5.9[5.89] \mathrm{m}$
C1
A1 $4 \quad 25$

Section B

Question 8

(a) longitudinal B1
(b) reflection B1
(c) use of speed $=$ distance/time $\quad \mathrm{C} 1$
$(0.45$ or 0.9$) / 1.6 \times 10^{-4}$ or $0.45 / 0.8 \times 10^{-4} \quad \mathrm{C} 1$
$=5.6 \mathrm{~km} \mathrm{~s}^{-1} \quad[5.625] \quad$ A1 5

Question 9

(a) One benefit B1

Second benefit B1
One drawback B1
Second drawback B1
states physical principle of one of above [notate \checkmark^{p}] B1
(b) Use of physics terms is accurate, the answer is fluent/well argued B2with few errors in spelling, punctuation and grammarAnd gains at least 3 marks for physicsB1Use of physics terms is accurate but the answer lacks coherenceor the spelling, punctuation and grammar are poorand gains at least 1 mark for physicsB0
Use of physics terms is inaccurate, the answer is disjointed withsignificant errors in spelling, punctuation and grammar
(i) Stated technique (e.g. ultrasound) B1
(ii) Explanation of how technique overcomes limitation B1 29

Question 10

(a) Appropriate method B1
sensible and correct readoffs B1
correct evaluation from readoffs \quad B1 $\mathbf{3}$
(b) correct readoff on y-axis B1
use of $\lambda=A / N \quad \mathrm{C} 1$
correct evaluation from readoff [condone use of 6.0 here] \quad A1 $\quad 3 \quad \mathbf{6}$
or determines $T_{1 / 2} /$ uses $T_{1 / 2}=0.69 / \lambda / \lambda=0.69 / 725$

Question 11

(a) correct use of parsec conversion
C1
correct use of $v=H d$
C1
$=9.43 \times 10^{6}$
A1 3
(b) (i) use of $\Delta \lambda / \lambda=v / c \quad$ C1

$$
\begin{array}{ll}
\Delta \lambda=5.8 \times 10^{-7} \times 9.43 \times 10^{6} / 3 \times 10^{8} & \text { C1 } \\
=18.2 \times 10^{-9} \mathrm{~m} & \text { A1 } \mathbf{3}
\end{array}
$$

(ii) adds wavelengths...
correctly; cand ans to $\mathrm{b}+580.0$ [ecf]

C1
A1 28

Question 12

(a) Separation $=1 / 630000$
B1 1
(b) (i) quote $n \lambda=d \sin \theta \quad$ C
$\lambda=1.59 \times 10^{-6} \times \sin (25.4)$
$=6.8 \times 10^{-7} \mathrm{~m}$ or $6.8 \times 10^{-4} \mathrm{~mm}$
C1
A1 3
(ii) Central maximum/zeroth order mentioned B1

Central maximum is white
B1
Describe $/$ draw $1^{\text {st }} / 2^{\text {nd }}$ orders colours in correct order B1
Third order overlap
B1
symmetry of pattern
dispersion change
fainter away from centre
Max 48

Question 13

(a) (i) $\lambda=3 \times 10^{8} / 1.5 \times 10^{9} \quad \mathrm{C}$
$\lambda=0.20 \mathrm{~m}$
A1 2
(ii) $\quad \begin{array}{lll}\theta / 2=\sin ^{-1}\left(\text { or } \tan ^{-1}\right) 3500 / 36000 \text { or } \theta=\sin ^{-1} 7000 / 36000 & \text { C1 } & \\ =\sin -1(0.098)=5.6^{\circ} \text { so } \theta=11.2^{\circ} & \text { A1 } & \mathbf{2}\end{array}$
(iii) $\begin{array}{ll}\mathrm{b}=0.2 / 0.098 \\ \text { [ecf ai/ } / 0.5 \times \sin (\text { aii }) ; \text { condone use of } \theta \text { or } \theta / 2]\end{array} \quad \mathrm{C} 1 \quad \begin{aligned} & \text { A1 } \\ & \\ & =2.0(4) \mathrm{m}\left[\text { condone use of } 5.6^{\circ} \text { c.f. from aii] }\right.\end{aligned}$
(iv) satellite small /need to concentrate energy on it so θ small too/less diffraction with bigger dish

B1 1
(b) binary code/01 etc. required
many samples transmitted down same channel or at same
frequency/in short period of time
sampling process required
signals transmitted in sequence
good description or diagram of process
method is secure
cheaper/lighter/more efficient than multi-transmitter/more satellites without tdm
considers bandwidth or bit rate issue calculates no of channels available from reasonable estimates of bandwidth and frequency range

Max 55
Use of physics terms is accurate, the answer is fluent/well argued B2
with few errors in spelling, punctuation and grammar
And gains at least 3 marks for physics
Use of physics terms is accurate but the answer lacks coherence B1 or the spelling, punctuation and grammar are poor and gains at least 1 mark for physics
Use of physics terms is inaccurate, the answer is disjointed with B0significant errors in spelling, punctuation and grammar14

