ASSESSMENT and

Mark scheme January 2004

GCE

Physics B

Unit PHB1

Copyright © 2004 AQA and its licensors. All rights reserved.

Marking Scheme

NOTES FOR GUIDANCE

Letters are used to distinguish between different types of marks in the scheme.
M indicates OBLIGATORY METHOD MARK
This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK
This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK
These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK

This is a mark which is independent of M and C marks.
Note: Where a correct answer only (c.a.o.) is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.

Where an error carried forward (e.c.f.) is allowed by the Marking Scheme for an incorrect answer, e.c.f. must be written on the script if an error has been carried forward.

Instructions to Examiners

1 Give due credit to alternative treatments which are correct. Give marks for what is correct; do not deduct marks because the attempt falls short of some ideal answer. Where marks are to be deducted for particular errors specific instructions are given in the marking scheme.

2 Do not deduct marks for poor written communication. Refer the script to the Awards meeting if poor presentation forbids a proper assessment. In each paper candidates may be awarded up to two marks for the Quality of Written Communication in cases of required explanation or description. Use the following criteria to award marks:

2 marks: Candidates write legibly with accurate spelling, grammar and punctuation; the answer containing information that bears some relevance to the question and being organised clearly and coherently. The vocabulary should be appropriate to the topic being examined.

1 mark: Candidates write with reasonably accurate spelling, grammar and punctuation; the answer containing some information that bears some relevance to the question and being reasonably well organised. Some of the vocabulary should be appropriate to the topic being examined.

0 marks: Candidates who fail to reach the threshold for the award of one mark.
3 An arithmetical error in an answer should be marked AE thus causing the candidate to lose one mark. The candidate's incorrect value should be carried through all subsequent calculations for the question and, if there are no subsequent errors, the candidate can score all remaining marks (indicated by ticks). These subsequent ticks should be marked CE (consequential error).

4 With regard to incorrect use of significant figures, normally two, three or four significant figures will be acceptable. Exceptions to this rule occur if the data in the question is given to, for example, five significant figures as in values of wavelength or frequency in questions dealing with the Doppler effect, or in atomic data. In these cases up to two further significant figures will be acceptable. The maximum penalty for an error in significant figures is one mark per paper. When the penalty is imposed, indicate the error in the script by SF and, in addition, write SF opposite the mark for that question on the front cover of the paper to obviate imposing the penalty more than once per paper.

5 No penalties should be imposed for incorrect or omitted units at intermediate stages in a calculation or which are contained in brackets in the marking scheme. Penalties for unit errors (incorrect or omitted units) are imposed only at the stage when the final answer to a calculation is considered. The maximum penalty is one mark per question.

6 All other procedures, including the entering of marks, transferring marks to the front cover and referrals of scripts (other than those mentioned above) will be clarified at the standardising meeting of examiners.

PHB1

Section A

Question 1

1 mark each correct row
B3 3

Question 2

(a) attempt to calculate area
$2.5 \times 24.5+0.5 \times 1.0 \times 24.5=73.5 \mathrm{C}$ condone 73 C
B1 2
$\begin{array}{ll}\text { (b) during the test the temperature increases } & \text { B1 } \\ \text { wire resistance increases with temperature } & \text { B1 2 }\end{array}$

Question 3

(a) two correct weight arrows with labels (100N, W)
arrows must act on beam (horiz. scope: M, 50 m respectively)
normal reaction arrow at pivot point (with label) B1 2
(b) Use of 36 x a distance C1
moment $=43.2 \mathrm{Nm} \quad(36 \times 1.3=46.8) \quad$ A1 2
(c) clockwise moment = anti-clockwise moment \quad C1
$43.2=0.40 \times 100+0.55 \mathrm{w}$ M1
$\mathrm{w}=5.8 \mathrm{~N} \quad$ allow ecffrom (b) (46.8 gives 12.4 N$) \quad$ A1 3

Question 4

(a) Diode or LED B1 1
(b) Use of V/I

C1
$=1.03$ OR 1.04 OR 1.0Ω correct numerical answer only
(c) rectification/description such as "a.c. to d.c"
/demodulation/protection against current surges

Question 5

(a) $\mathrm{PE}=\mathrm{mgh}$

$$
=41 \times 9.8 \times 3.0=1200 \text { or } 1210 \mathrm{~J}
$$

$$
\text { A1 } 2
$$

(b) (i) $\mathrm{mgh}=0.5 \mathrm{mv}^{2} \quad \mathrm{C} 1$
$\mathrm{v}=7.7 \mathrm{~ms}^{-1} \quad$ or ecffrom (a)

$$
\text { (ii) } \quad \begin{aligned}
\mathrm{F} & =\operatorname{mgcos} 50 \\
& =258 \mathrm{~N}
\end{aligned}
$$

C1
A1 224

Section B

Question 6

(a) a velocity divided by a time

C1
single reading from graph of v in range $54 . .56$
C1
acceleration in range $90 . .93 .4 \mathrm{~ms}^{-2}$
A1 3
(b) clear attempt to estimate area under the curve

C1
use of correct scale factor: $1 \mathrm{~cm}^{2}$ represents $10 \times 0.2 \mathrm{~m}$
C1
max height in range $80 . .90 \mathrm{~m}$
A1 3
(c) $\quad \mathrm{t}^{2}=(2 \mathrm{x}$ answer to $(\mathrm{b})) / 9.8 \quad \mathrm{C} 1$
expected answer in range $4.0 . .4 .3 \mathrm{~s}$ allow ecf for height
A1 28

Question 7

(a) $\quad \mathrm{R}=\rho \mathrm{l} / \mathrm{A}$ or $\rho=\mathrm{RA} / 1$

B1

$$
\mathrm{R}=1.1 \times 10^{-6} \times 3.0 /\left(1.7 \times 10^{-8}\right) \quad \mathrm{B} 1
$$

$=194 \quad$ at least $3 s f$
B1 3
(b) $\quad \mathrm{P}=\mathrm{V}^{2} / \mathrm{R}\left(P=(240)^{2} / 190\right.$ or $\left.(240)^{2} / 194\right)$

OR use of $\mathrm{I}=\mathrm{V} / \mathrm{R}$ and $\mathrm{P}=\mathrm{I}^{2} \mathrm{R}$
C1
$=300 \mathrm{~W}$ (303 or 297 respectively)
(c) (i) power output of $\mathrm{R}_{2}=2 \times$ power output of $\mathrm{R}_{1}(=600 \mathrm{~W})$

B1
$\mathrm{R}_{2}=0.5 \times \mathrm{R}_{1}$
OR use of $\mathrm{R}_{2}=\mathrm{V}^{2} / \mathrm{P}_{2}$ and $l=\mathrm{RA} / \rho$
length in range $1.47 . .1 .49 \mathrm{~m} \mathrm{OR}=1.5 \mathrm{~m}$
(900W gives length in range 0.97..0.99 $\mathrm{m}=2 \mathrm{marks}$)
(ii) Use of $\mathrm{I}=\mathrm{P} / \mathrm{V} \quad$ OR $\quad \mathrm{I}=\mathrm{V} / \mathrm{R}_{1}+\mathrm{V} / \mathrm{R}_{2}$

C1
I in range 3.7..3.8 A
A1 210
allow ecffrom (b) or (c)(i) (eg. I in range 4.9..5.1 A for 900 W)

Question 8

(a) 1200 N
B1 1
(b) (i) $\mathrm{E}=0.5 \mathrm{Fx}$
C1
$=0.5 \times 1200 \times 0.40=240 \mathrm{~J}$
A1 2
(ii) $\quad \begin{aligned} & \mathrm{k}=\mathrm{E} /\left(0.5 \Delta \mathrm{l}^{2}\right) \\ & =240 \times 2 / 0.16=3000\end{aligned}$
OR $\mathrm{k}=\mathrm{F} / \Delta \mathrm{l} \quad \mathrm{C} 1$
$=1200 / 0.4=3000$
A1 2
(c) (i) $\quad \mathrm{a}=(12.0-6.0) / 5.0=1.20$
C1
use of $\mathrm{F}=\mathrm{ma}$ C1
increase in $T=84 \mathrm{~N}$
(ii) the resistive forces increase with speed/velocity B1
mention of drag/air resistance/water resistance (NOT friction)
B1
tension increase $=$ accelerating force

+ force equal to extra resistance
B1
increase in tension produces a forward moment B1
skier must lean (further) backwards B1
to produce a balancing moment M1
using his/her body weight A1
lower centre of gravity/mass (also) increases stability B1
Max 5, at least 2 from each group

QWC marks:

accurate use of physics terms, fluent well-argued prose, good punctuation and grammar + at least 3 physics marks 2
OR accurate use of physics terms in comprehensible prose but poor spelling/grammar + at least 1 physics mark 1
OR no marks for the physics and/or very disjointed prose with poor spelling

Question 9

(a) as the temperature of T increases its resistance decreases /more charge carriers are released increasing the current in the circuit /changing the ratio of resistance/reducing pd across T
(b) $\quad \mathrm{T} / 20.0=1.0 / 5.0$ OR $5.0 / 6.0=20 /(20+\mathrm{T}) \mathbf{O R}$ equivalent

Note $T=(1 / 5) 20$ just ok but $T=20 / 5$ not enough
(c) Use of Vout $=\mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{x}$ Vin OR $\mathrm{I}=6 / 44.5=0.135 \mathrm{~A} \quad \mathrm{C} 1$ $\mathrm{V}=2.7 \mathrm{~V}$

A1 2
(d)
(i) $\quad \mathrm{V} / 6.0=20.0 /(20.0+4.0+3.0) \quad$ OR $\mathrm{I}=0.222 \mathrm{~A}$ C1 $\mathrm{V}=4.4 \mathrm{~V}$

A1 2
(ii) The measure temperature would be lower because the pd across the resistor would be less (ie 2.53 V)

B1 $\mathbf{1 8}$

Question 10

(a) sketch graph of a reasonable analogue signal
sketch graph of a square waveform
showing clearly only two (voltage) levels
comment to the effect that analogue signals are continuous
whereas digital signals are discrete
accept good reference to 0s and 1s and/or binary \quad B1 \quad B1 \quad B1
(b) signal strength falls with distance accept power/energy loss B1
this is called attenuation B1
the reason is energy loss due to the heating effect $/ \mathbf{I}^{\mathbf{2}} \mathbf{R}$ effect $\quad \mathrm{B} 1$
using superconductors reduces resistance and therefore heating B1
noise/random electrical energy/electrical interference
may get added to the signal B1
this could be from e-m induction/thunderstorms
/other named cause
B1
it is easier to remove noise from digital signals B1
both types of signal can be boosted B1
digital signals can travel further before they need boosting B1
digital signals are boosted by regenerators B1
analogue signals are boosted by repeaters/amplifiers
accept amplification
B1
metal cables are vulnerable tapping B1
replacing metal cables with optical fibres
addresses all of these problems
B1

Don't credit radio transmission as a solution

any 4 points from the list including a reference to two problems
Notes If a candidate implies a valid problem without gaining the mark associated with stating it, the other marks relating to it can still be awarded.
3 marks max if only one problem given; no problem = no marks

QWC marks:

accurate use of physics terms, fluent well-argued prose, good punctuation and grammar + at least 2 physics marks
OR accurate use of physics terms in comprehensible prose but poor spelling/grammar + at least 1 physics mark
OR no marks for the physics and/or very disjointed
prose with poor spelling
010

