

GCE

Physics B

Unit PHB6

Copyright ${ }^{\odot} 2003$ AQA and its licensors. All rights reserved.

PHB6

Exercise 1

Question 1

(a)(i) value $\approx 5(\mathrm{~mm})$ allow 1 or 2 s.f.. B1
repeated and averaged appropriate unit B1
(ii) correct substitution into $\pi \mathrm{r}^{2} \quad$ M1
correct calculation in cm^{2} only (0.20/0.28 most likely) A1

B1
multiplication by area and addition of $5.0 \mathrm{~cm}^{3}$ (2/3 s.f.)
($5 \mathrm{~cm}^{3}$ scores 1 and $5.0 \mathrm{~cm}^{3}$ scores 2)
B1
(c)(i) mention of bottom of meniscus allow clear diagram
(ii) start at same level one up and one down, two up and two down etc. or other sensible clear statements

B1
(d)(i) minimum of 3 positive values of h (not including 0)

B3
minimum of 3 negative value of $h \quad$ B3
minimum of six readings showing h to be the sum of distances from neutral position on each side/ repeats and averages of l or h shown B1 minimum of six l values consistent with h's recorded B1 neat table with consistent significant figures B1
(ii) table containing corresponding values of h, V and $1 / V$ with correct units B1
V correctly calculated/or simply read from syringe scale B1
all V values to 1 d.p. in cm^{3}
B1
$1 / V$ correctly calculated (check first value) B1
(e) axes correct way round and quantities and units correctly labelled B1 scales non-awkward and at least half length of paper in each direction M1
\min of five points correctly plotted (allow 1 error of 1 mm)
check and tick two extreme (from table) points
Al
best straight line (0 if less than four points plotted) B1
overall quality of the graph
B1
(f)(i) candidate relates k to gradient M1
use of large gradient triangle (at least half plotted line in each direction) with correct side lengths/coordinates M1
consistent value for $k 2 / 3$ s.f.* A1
(ii) cm^{4} etc.

B1
use of point on line
B1
substitute coordinates and k value

2
consistent calculation of P (in same units as h) $2 / 3$ s.f.* compensation of 1 for correctly read intercept on poor scale (in same units as h) B1
*only one penalty
number of moles or mass of gas M1
relevant comparison of equation with ideal gas A1
temperature M1
relevant comparison of equation with ideal gas A1
density of liquid in tube M1
clear link with $p=h \rho g$ A1
the use of physics is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar (must gain at least 2 for Physics)
the use of physics is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor (must gain at least 1 for Physics)
the use of the physics is inaccurate, the answer is disjointed with significant errors in spelling punctuation and grammar.
Max4

6

Exercise 2

Question 1

(a) swing: reference to total of 10 or more oscillations B
calculated T / s
₹ 1 s*
bounce: reference to total 5 or more oscillationsB1
calculated T / s B1
$\approx 0.5 \mathrm{~s}$ *
twist: reference to total 2 or more oscillations B1
calculated T/s B1
$\approx 10 \mathrm{~s}$ *
*penalise any oscillations that are clearly $1 / 2$ oscillations either by descriptions or inconsistent times
*penalise unit once only
(b)(i) greatest damping of bouncing oscillations + least damping twisting B1
(ii) top gpe; bottom epe (+ gpe); middle ke (+ gpe) B1
temp rise of rubber/w.d. on rubber/ rubber "heats up"
B1
(iii) air resistance M1
internal energy of rubber not heating M1
further detail relating to either air resistance or increased internal energy of rubber: large surface area at right angles tomotion means high air resistance - energy transferred tosurroundings /increased kinetic energy of air molecules/ on fallingwork is done by gravity in separating molecules /energy is notrecovered when rubber contracts so loss of possible energy /hysteresis etc.
(c) minimum of 5 steps of $100 \mathrm{~g} \quad$ B1
constant twist applied B1
time 10 oscillations B1
repeat and average times B1
graph of $\lg T$ vs $\lg \mathrm{m}$ (or reversed) B1
gradient n (or $1 / n$) B1
$\lg T$ intercept $\lg c$ (or consistent with graph) B1
Max6
the use of physics is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar (must gain at least 3 for Physics)
the use of physics is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor
(must gain at least 1 for Physics)
the use of the physics is inaccurate, the answer is disjointed with significant errors in spelling punctuation and grammar.

Question 2

(a)(i) $\mathrm{R}=120.0 \Omega(4$ s.f.)
(b) \quad value of $\mathrm{R}_{\max }$ approximately 2Ω largerB1
any second reading B1
to $3 / 4$ s.f. B1
value of $\mathrm{R}_{\min }$ taken with gauge clearly on underside B14
(c)(i) larger value on the top - extension or wire thinner B1
smaller value on the bottom - compression or wire fatter B1(i) $\quad \min$ of 1 value of ΔR divided by R (allow fraction)B1
(d)(i) $8-10 \mathrm{~mm}$ M1multiplied by number of strips (10 or 12) (u.p.) A1

2

B1

B1
estimate of δl (either 1 or 2 mm) OR $\delta l / l$ B1
clear idea that $\%$ extension $=\% l+\% \Delta R+\% R$ M1
\% x extension A1B1
(ii) correct use of potential divider formula OR calculation of relevant currentM1 calculation of unstretched and stretched voltages to give change in voltage OR of change in resistance (ΔR) multiplied by current to give change in voltage sensible comment regarding likelihood of being resolved base on precision of typical voltmeter
(e)(i) resistor in series with strain gauge and power supply resistor $\approx 60-120 \Omega$ and power supply ($1-12 \mathrm{~V}$) M1

A1

Total 19

