

GCE

Physics B

Unit PHB5

Copyright ${ }^{\odot} 2003$ AQA and its licensors. All rights reserved.

PHB5

Question 1

(a)(i)	(magnetic) flux Not flux linkage	B1	1
(ii)	weber or tesla-metre ${ }^{2}$ or Wb or $\mathrm{T} \mathrm{m}^{2}$	B1	1
(b)(i)	$\max \mathrm{d} B / \mathrm{d} t$ determined using tangent drawn at $t=0,0.5 \mathrm{~s}$ or 1.0 s (value should be in range 0.5 to $0.8\left(x^{-2} \mathrm{~T} \mathrm{~s}^{-1}\right)$ or coordinates in an equation) (condone powers of 10)	B1	
	Attempt to apply $\Delta(B A N) / t$ e.g. induced emf $=240 \times 2.5 \times 10^{-4} \times \mathrm{dB} / \mathrm{dt}$ (ignore powers of 10 here) (any B divided by any t is sufficient evidence e.g. 0.24 s or 1 s)	C1	
	Answer using correct method in range $0.30-0.50 \mathrm{mV}$ (allow 1, 2 or 3 sf answers)	A1	3
(ii)	Graph showing positive and negative values zero emf at approximately correct times (0.20 to 0.26 s and 0.70 to 0.76 s) maximum at correct times and correct shape	M0 A1	
	Ignore phase; Must show positive and negative emfs	A1	2
(iii)	Pendulum has to be shorter	C1	
	Length reduced to $1 / 4$ original length	A1	2
(iv)	the (maximum) speed of the magnet increases (condone angular speed) the (maximum) rate of change of flux increases or	B1	
	wires/coil cuts flux at a higher rate	B1	2
(v)	ANY 2 from		
	use a stronger/more powerful magnet	B1	
	use a coil with more turns (allow more coils)	B1	
	(use a coil with) greater area (Not magnet with greater area)	B1	
	use a soft iron core in the coil	B1	
	use a larger amplitude of oscillation of the magnet	B1	Max

(vi) output/voltage would be sampled
or
sample at a frequency (much) higher than that of the pendulum
B1
changed to digital/binary form
or
processed by an A-D converter

B1
Total 15

Question 2

(a) the radius/diameter of the planet
not 'size'
B1 the mass (or density) of the planet
B1

2
(b)(i) volume of the granite $=4 / 3 \pi r^{3}$
or
radius of the granite $=0.2 \mathrm{~km}$ (may be seen in an incorrect equation) $\quad \mathrm{B} 1$
200^{3} or $4 / 3 \pi 0.2^{3}$ or $3.35 \times 10^{7} \mathrm{~m}^{3}$
Mass $=$ density x volume used with any density and their volume
(Volume may be in formula form)
If they use correct volume then either 1.24×10^{11} or 7.37×10^{10} gets
the mark)

B1
$(3700-2200) \times 3.35 \times 10^{7}$ or $1500 \times 3.35 \times 10^{7} \mathrm{~kg}$ or $\left(1.24 \times 10^{11}-7.37 \times 10^{10}\right)$ or 5.025×10^{10} or 5.03×10^{10} seen Condone rounding off early leading to $4.6 \times 10^{10} \mathrm{~kg}$

B1

NB

1)the fourth mark is not for 5.0×10^{10} - all working must be shown 2)those who do not show conversion of radius from km to m in the calculation but otherwise correct will get 3
(ii) Gravitation field strength $g=G M / r^{2}$
or
uses distance of 0.4 km for r
Substitution for extra field strength $=6.7 \times 10^{-11} \times 5.0 \times$ $10^{10} /\left(0.4 \times 10^{3}\right)^{2}$
Condone $r=0.4$ for this mark
Correct substitution for the extra field strength with correct powers of 10
$2.1 \times 10^{-5} \mathrm{~N} \mathrm{~kg}^{-1}$ (condone $\mathrm{m} \mathrm{s}^{-2}$)
or
1.9×10^{-5} if 4.6×10^{10} carried forward from (i) A1
(iii) Correct general shape always below original curve

B1
1

Alternative scheme for different approach to (ii)
(ii) Gravitation field strength $=G M / r^{2}$
or
uses distance of 0.4 km for r
C1

Correct substitution for field strength for granite (or soil)
$6.7 \times 10^{-11} \times 1.24 \times 10^{11} /\left(0.4 \times 10^{3}\right)^{2}$ or $6.7 \times 10^{-11} \times 7.37 \times$ $10^{10} /\left(0.4 \times 10^{3}\right)^{2}$
Condone $r=0.4$ for this mark
Correct substitution for field strength for soil (or granite) C1
$2.1 \times 10^{-5} \mathrm{~N} \mathrm{~kg}^{-1}$ (condone $\mathrm{m} \mathrm{s}^{-2}$)

4
in this system
work has to be done to take a positive charge to infinity/away from Q or energy has to be put in to take a positive charge to infinity/away from Q
or positive charge loses PE as it moves from infinity/toward Q or positive charge gains PE as it moves to infinity/away from Q

Not
the field is such that positive charge is attracted potentials are negative because charge is negative
(ii) three radial lines drawn (condone more than three) all toward the charge by eye (-1 for poor quality) B1 at least one arrow shown directed toward the charge B1
(b)(i) $\quad V=q / 4 \pi \varepsilon_{0} r$C1

Correct substitution of any pair of V and r e.g. $10 \times\left(4 \pi 8.9 \times 10^{-12} \times 4.0 \times 10^{-2}\right)\left(=4.47 \times 10^{-11} \mathrm{C}\right)$
(ii) $E=q / 4 \pi \varepsilon_{0} r^{2}$ or $V / r \quad(\operatorname{not} V / d)$
(c) energy transferred $=V q$
or
potential difference $=30 \mathrm{~V}$
or
$\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0}}\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]$ or $\frac{1.6 \times 10^{-19} \times 4.5 \times 10^{-11}}{4 \pi 8.9 \times 10^{-12}}\left[\frac{1}{0.01}-\frac{1}{0.04}\right]$ (condone
1/1-1/4)
$4.8(3) \times 10^{-18} \mathrm{~J}$
ecf for their incorrect charge from (b)(i)
(ii) (As it moves away)
electron loses PE or work is done on the electron
or
the electron is repelled by the negative charge $\quad \mathrm{B}$
wavelength will decrease B1
plus 2 from
as the electron moves away speed will increase B1
as the electron moves away the momentum will increase B1
$\lambda=h / m v$ or h / p or $\lambda \propto 1 / v$ or $\lambda \propto 1 / m v$
At least 3 marks for physics + use of Physics is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar

At least 1 mark for physics the use of Physics is accurate, but the answer lacks coherence or spelling, punctuation and grammar are poor
the use of Physics is inaccurate, the answer is disjointed, with significant errors in spelling, punctuation and grammar

Question 4

(a)(i) 1 N per A per m
or $1 \mathrm{~Wb} \mathrm{~m}^{-2}$
or quotes: $B=F / I L$ with terms defined
or induced $E M F=\triangle B A N / t$ with terms defined
or a slightly flawed attempt at the definition in statement form
It is the flux density (perpendicular to a wire) that produces a force of 1 N per m on the wire when the current is 1 A
or
$B=F / I L$ and 1 T is flux density when $F=1 \mathrm{~N} ; I=1 \mathrm{~A}$ and $L=1 \mathrm{~m}$ or induced $E M F=\triangle B A N / t$ and 1 T is the flux change when emf $=$ 1 V for $A=1 N=1$ and $t=1$ or similar
(ii) force on charge due to E field, $F_{\mathrm{E}}=E q$ or $V q / d$ and
force due to B field, $\mathrm{F}_{\mathrm{B}}=B q v$
or $E q=B q v$
$=B q v$; cancels q and states explicitly $v=\frac{E}{B}$ or $v=\frac{V}{d B}$
(iii) $\quad v=20000 / 0.14$ (seen) or $143 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
(b)(i) $\quad B q v=m v^{2} / r \quad$ or $r=m v / B q$ (allow e instead of q)
mass of ion $=1.7 \times 10^{-27} \times 58$ (may be in equation) or $(9.86 \times$ $10^{-26} \mathrm{~kg}$ seen)
or
radius $=0.14 \mathrm{~m}$ (may be in equation)
Substitutes and arrives at 0.62 to 0.63 T
(ii) Calculates new radius (0.145 m) or diameter (0.288 m)
using $r \propto m$ or otherwise allowing ecf
0.010 m (condone 0.01 m) or $0.0096-0.0097 \mathrm{~m}$
(Allow 0.0079 m or 0.008 m due to use of different sfs for B and v)

Question 5

(a) 1
(b)(i) $\quad E_{\mathrm{k}}=E_{\mathrm{p}}$ when the protons touch
or $E_{\mathrm{k}}=q^{2} / 4 \pi \varepsilon_{0} r$
or separation when they touch $=3.0 \times 10^{-15} \mathrm{~m}$
or $V=q / 4 \pi \varepsilon_{0} r$
$E_{\mathrm{k}}=\left(1.6 \times 10^{-19}\right)^{2} / 4 \pi\left(8.9 \times 10^{-12}\right)\left(3.0 \times 10^{-15}\right)$
or
$E_{\mathrm{k}}=\left(1.6 \times 10^{-19}\right)^{2} / 4 \pi\left(8.9 \times 10^{-12}\right)\left(1.5 \times 10^{-15}\right)$
$7.6(1) \times 10^{-14} \mathrm{~J}$ (cao)
C1
A1
3
(ii) incident proton will stop and the stationary proton will move off at velocity/speed of the incident proton
or
All KE/momentum is transferred to the stationary particle
NB not they will not touch
B1
1
(iii) protons travel in the opposite directions or velocity is reversed
with initial speeds
total momentum before $=0$ so momentum after must be 0
or
provided they have said that speeds are the same
total KE is same before and after the collision
or
the collision is elastic
B1
3
(iv) mention of strong nuclear force
or
the repulsive force is overcome
the strong nuclear force is greater than the electrostatic repulsion
or
the strong nuclear force is effective when the protons touch
(c) $\quad E=m c^{2}$
mass increase $=\{(2 \times 2.2)-(2 \times 1.7)\} \times 10^{-27} \mathrm{~kg}=1.0 \times 10^{-27} \mathrm{~kg}$
or
calculates initial energy equivalence of 2 protons
or
final energy equivalence of 2 delta + particles

C1

8.6 or $9 \times 10^{-11} \mathrm{~J}$ (i.e. allow 1sf) c.a.o.
(NB Adding on the answer to (b)(i) is correct but it has no influence on the answer to 2 sf so its absence is condoned)

A1 3
Total 13

Question 6

(a) Escape energy $=\frac{G M m}{r}$ or $\frac{G M}{r}$
or $\frac{G M m}{r}=\frac{1}{2} m v^{2}$
$6.7 \times 10^{-11} \times 6.0 \times 10^{24} / 6400 \times 10^{3}=63 \mathrm{MJ}$
or
Calculates escape velocity using $\frac{G M m}{r}=\frac{1}{2} m v^{2}$ giving $11200 \mathrm{~m} \mathrm{~s}^{-1}$
or recalls escape velocity as 11000 or $11200 \mathrm{~m} \mathrm{~s}^{-1}$
or
Calculates velocity using $80 \times 10^{6}=\frac{1}{2} v^{2}$ giving $12600 \mathrm{~m} \mathrm{~s}^{-1}$
63 MJ per kg so 80 MJ is more than enough (OWTTE)
or
Calculates the other velocity and draws a conclusion
Recall of escape speed and showing escape energy $=63 \mathrm{MJ}$ with conclusion gets last two marks

NB Arriving at 63 MJ using $m g h$ is a physics error and gains no marks.
(These candidates get 63 MJ using $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ and the radius of the Earth for h)

B1
3
(b) Gases have to be given a velocity/momentum
or
Gas must have an equal and opposite force on it to that on the rocket
B1
The gases have kinetic energy
B1
or
If all KE given to the rocket there is no gas ejected from the exhaust
Momentum would not then be conserved A1
2
(c) fuel has to be provided to move the fuel needed for later parts of the journey
or to move the fuel itself

```
the ratio of payload to original mass that has to be moved is very
low.
or
a lot of fuel is needed (for a small payload)(which is expensive)
or
parts of the rocket that containing fuel are discarded on the journey
or
propulsion by burning fuel is inefficient
(or other sensible reason for inefficiency)
so no heating occurs
or
no \(I^{2} R\) losses
B1
(b) Magnet moving producing changing magnetic flux

B1
\(I^{2} R\) losses/heating of track (due to induced/eddy currents in the (resistive) track)

B1
the direction of the induced current oppose the change producing it or
mention of Lenz's law
B1
the induced current is in the magnetic field of the magnet so has a force on it
or
the induced current sets up a field that tries to prevent the magnet moving
or
track behaves like a magnet and attracts the superconducting magnet
The faster the motion or the greater the rate of change of magnetic flux,
the greater the induced currents
Faster vehicle leads to greater resistive/power losses
or
Faster vehicle leads to greater magnetic drag forces

At least 3 marks for physics + use of Physics is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar

At least 1 mark for physics + some incorrect work the use of Physics is accurate, but the answer lacks coherence or spelling, punctuation and grammar are poor
the use of Physics is inaccurate, the answer is disjointed, with significant errors in spelling, punctuation and grammar

\section*{Question 8}
(a)(i) energy per pulse \(=10000 / 28=360(357) \mathrm{J}\)

B1 \(\quad 1\)
C1
energy of one photon \(=1.86 \times 10^{-19} \mathrm{~J}\)
or
\(6.6 \times 10^{-34} \times 3 \times 10^{8} / 1060 \times 10^{-9}\) (ignore power of 10 for wavelength)
\(1.88-1.94 \times 10^{21}\) (i.e. their (a)(i) \(/ 1.86 \times 10^{-19}\) )

\section*{Question 9}
(a)(i) \(v^{2}=u^{2}+2 a s\)

C1
\(a=48 \mathrm{~m} \mathrm{~s}^{-2}\)
(negative answer is a physics error; \(u\) and \(v\) wrong way round loses A1 mark)

A1
2
(ii) \(v=u+a t\) or \(s=1 / 2(u+v) t\) or \(s=u t+1 / 2 a t^{2}\) B1 \(1700=48 t\) or \(30000=1 / 21700 t\) or \(850 t\) or \(30000=0.5 \times 48 t^{2}\) ( N.B. seen explicitly)

B1
(b)(i) \(\mathrm{PE}=m g h\) or \(\operatorname{GMm}\left(1 / r_{1}-1 / r_{2}\right)\) or \(\mathrm{KE}=1 / 2 \mathrm{mv}^{2}\) or one energy change calculated
\begin{tabular}{lll} 
PE 588000 J ; KE 2890000 J & (using \(m=2 \mathrm{~kg}\) ) & \\
or \(\mathrm{PE}=294000 \mathrm{~J} \quad\) or \(\mathrm{KE}=1450000 \mathrm{~J}\) & (using \(m=1 \mathrm{~kg}\) ) & C 1 \\
Two energy changes calculated correctly using \(m=1\) or 2 kg & C 1 & \\
\(3.5(3.48)\) MJ (c.n.a.o.) & & A1
\end{tabular}
(ii) Energy supplied \(=35 \mathrm{MJ}\) or 0.35 MW (using power \(=10 \mathrm{~kW}\) ) but no second mark allowed

Efficiency \(=\quad(9.9 \%\) or 0.099 if correct \()\)
( \(5.0 \%\) or 0.050 if fuel ignored)
Condone 1sf answers in these cases
e.c.f. from (b)(i)
( \(1.7 \%\) if PE only calculated in (i) \(8.3 \%\) if KE only calculated in (i))
(c) Diameter of the mirror needed \(=42 \mathrm{~m}\)
(d)(i) \(\quad p / T=\) constant
\(P=1 \times 10^{5} \mathrm{X} 40000 / 300=1.3 \times 10^{7} \mathrm{~Pa}\)
C1
A1 2
(ii) There will be little or no air/atmosphere (at 30 km height) M1
The system works by air/gas expanding
A1 or the system works by heating air/gas
or the thrust will be decreased or no thrust or no propulsion
or fewer molecules ejected so rate of change of momentum is lower (or lower thrust
Allow B1 for problems associated with not capturing energy due to the beam divergence beyond 30 km (i.e. considering hydrogen power as a different method of propulsion to overcome this problem)```

