

ASSESSMENT and QUALIFICATIONS ALLIANCE

Mark scheme June 2003

GCE

Physics B

Unit PHB5

Copyright $^{\odot}$ 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: *Director General*

PHB5

C				
(a)(i)	(magnetic) flux	Not flux linkage	B1	1
(ii)	weber or tesla-metre ² or Wb or T	$\int m^2$	B1	1
(b)(i)		gent drawn at $t = 0, 0.5$ s or 1.0 s 0.8 (x 10 ⁻² T s ⁻¹) or coordinates in	B1	
	here)	10^{-4} x dB/dt (ignore powers of 10 icient evidence e.g. 0.24 s or 1 s)	C1	
	Answer using correct method i (allow 1, 2 or 3 sf answers)	n range 0.30 – 0.50 mV	A1	3
(ii)	Graph showing positive and neg		M0	
	0.76 s)	ct times (0.20 to 0.26 s and 0.70 to	A1	
	maximum at correct times and c Ignore phase; Must show positiv	-	A1	2
(iii)	Pendulum has to be shorter Length reduced to ¹ / ₄ original len	igth	C1 A1	2
(iv)	the (maximum) speed of the mag speed) the (maximum) rate of change or or	f flux increases	B1	
	wires/coil cuts flux at a higher ra	ite	B1	2
(v)	ANY 2 from use a stronger/more powerful ma use a coil with more turns (allow (use a coil with) greater area (No use a soft iron core in the coil	w more coils)	B1 B1 B1 B1	
	use a larger amplitude of oscillat	ion of the magnet	B1	Max 2

(vi)	output/voltage would be sampled or sample at a frequency (much) higher than that of the pendulum	B1	
	changed to digital/binary form or processed by an A – D converter	B1	2
	I	Total	15
Question	12		
(a)	the radius/diameter of the planet not 'size' the mass (or density) of the planet	B1 B1	2
(b)(i)	volume of the granite = $4/3 \pi r^3$ or radius of the granite = 0.2 km (may be seen in an incorrect equation) 200^3 or $4/3 \pi 0.2^3$ or $3.35 \times 10^7 \text{m}^3$ Mass = density x volume used with any density and their volume (Volume may be in formula form) If they use correct volume then either 1.24×10^{11} or 7.37×10^{10} gets the mark) $(3700-2200) \times 3.35 \times 10^7$ or $1500 \times 3.35 \times 10^7$ kg or $(1.24 \times 10^{11} - 7.37 \times 10^{10})$ or 5.025×10^{10} or 5.03×10^{10} seen Condone rounding off early leading to 4.6×10^{10} kg NB 1)the fourth mark is not for 5.0×10^{10} – all working must be shown 2)those who do not show conversion of radius from km to m in the calculation but otherwise correct will get 3	B1 B1 B1	4
(ii)	Gravitation field strength $g = GM/r^2$ or uses distance of 0.4 km for r Substitution for extra field strength = 6.7 x 10 ⁻¹¹ x 5.0 x 10 ¹⁰ /(0.4x10 ³) ² Condone $r = 0.4$ for this mark Correct substitution for the extra field strength with correct powers of 10 2.1 x 10 ⁻⁵ N kg ⁻¹ (condone m s ⁻²) or 1.9 x 10 ⁻⁵ if 4.6 x 10 ¹⁰ carried forward from (i)	C1 C1 C1 A1	4
(iii)	Correct general shape always below original curve	B 1	1
		_	

Total 11

(ii)	Alternative scheme for different approach to (ii) Gravitation field strength = GM/r^2		
	or uses distance of 0.4 km for <i>r</i>	C1	
	Correct substitution for field strength for granite (or soil) 6.7 x 10^{-11} x 1.24 x $10^{11}/(0.4x10^3)^2$ or 6.7 x 10^{-11} x 7.37 x $10^{10}/(0.4x10^3)^2$		
	Condone $r = 0.4$ for this mark	C1	
	Correct substitution for field strength for soil (or granite)	C1	
	2.1 x 10^{-5} N kg ⁻¹ (condone m s ⁻²)	A1	4
Questio	on 3		
(a)(i)	zero potential is taken to be at 'infinity' (or a long way from the charge)	B1	
	in this system work has to be done to take a positive charge to infinity/away from Q or energy has to be put in to take a positive charge to infinity/away from Q		
	or positive charge loses PE as it moves from infinity/toward Q or positive charge gains PE as it moves to infinity/away from Q	B1	2
	Not the field is such that positive charge is attracted potentials are negative because charge is negative		
(ii)	three radial lines drawn (condone more than three)		
	all toward the charge by eye $(-1 \text{ for poor quality})$	B1	
	at least one arrow shown directed toward the charge	B1	2
(b)(i)	$V = q/4\pi \varepsilon_{\rm o} r$	C1	
	Correct substitution of any pair of V and r e.g. $10x (4\pi 8.9 \times 10^{-12} \times 4.0 \times 10^{-2}) (= 4.47 \times 10^{-11} \text{ C})$	A1	2
(ii)	$E = q/4\pi\varepsilon_0 r^2$ or V/r (not V/d)	M1	
	250 (251) V m ⁻¹ (N C ⁻¹) (ignore lack of direction indication)	A1	2
(c)	energy transferred = Vq		
	or potential difference = 30 V		
	or		
	$\frac{Q_1 Q_2}{4\pi\varepsilon_0} \left[\frac{1}{r_1} - \frac{1}{r_2} \right] \text{ or } \frac{1.6 \times 10^{-19} \times 4.5 \times 10^{-11}}{4\pi 8.9 \times 10^{-12}} \left[\frac{1}{0.01} - \frac{1}{0.04} \right] \text{ (condone)}$		
	1/1-1/4)	C1	
	$4.8(3) \ge 10^{-18} \text{ J}$		
	ecf for their incorrect charge from (b)(i)	A1	2

(ii)	(As it moves away) electron loses PE or work is done on the electron or		
	the electron is repelled by the negative charge wavelength will decrease	B1 B1	
	plus 2 from as the electron moves away speed will increase as the electron moves away the momentum will increase	B1 B1	
	$\lambda = h/mv$ or h/p or $\lambda \propto 1/v$ or $\lambda \propto 1/mv$	B1 4	ł
	At least 3 marks for physics + use of Physics is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar	2	:
	At least 1 mark for physics the use of Physics is accurate, but the answer lacks coherence or spelling, punctuation and grammar are poor	1	L
	the use of Physics is inaccurate, the answer is disjointed, with significant errors in spelling, punctuation and grammar	0)
		M: 2 6	2
		Total 16	

(a)(i)	1 N per A per m		
	or 1 Wb m^{-2}		
	or quotes: $B = F/IL$ with terms defined		
	or induced <i>EMF</i> = $\Delta BAN/t$ with terms defined		
	or a slightly flawed attempt at the definition in statement form	C1	
	It is the flux density (perpendicular to a wire) that produces a force		
	of 1N per m on the wire when the current is 1A		
	or		
	B = F/IL and 1 T is flux density when $F = 1$ N; $I = 1$ A and $L = 1$ m		
	or induced $EMF = \Delta BAN/t$ and 1 T is the flux change when emf =		
	1V for $A=1$ $N=1$ and $t=1$ or similar	A1	2
(ii)	force on charge due to E field, $F_{\rm E} = Eq$ or Vq/d		
	and		
	force due to B field, $F_B = Bqv$		
	or Eq=Bqv	B1	
	= Bqv; cancels q and states explicitly $v = \frac{E}{B}$ or $v = \frac{V}{dB}$		
	= <i>Bqv</i> ; cancels <i>q</i> and states explicitly $v = \frac{1}{B}$ or $v = \frac{1}{dB}$	B1	2
(;;;)	v = 20000/0.14 (seen) or 143 x 10 ³ m s ⁻¹	B1	1
(iii)	v = 20000/0.14 (seen) or 143 x 10 m s	DI	1

		Total	10
	0.010 m (condone 0.01 m) or $0.0096 - 0.0097$ m (Allow 0.0079 m or 0.008 m due to use of different sfs for <i>B</i> and <i>v</i>)	A1	2
(ii)	Calculates new radius (0.145 m) or diameter (0.288 m) using $r \propto m$ or otherwise allowing ecf	C1	
	or radius = 0.14 m (may be in equation) Substitutes and arrives at 0.62 to 0.63 T	C1 A1	3
(b)(i)	$Bqv = mv^2/r$ or $r = mv/Bq$ (allow <i>e</i> instead of <i>q</i>) mass of ion = 1.7 x 10^{-27} x 58 (may be in equation) or (9.86 x 10^{-26} kg seen)	C1	

(a)	1	B1	1
(b)(i)	$E_{\rm k} = E_{\rm p}$ when the protons touch or $E_{\rm k} = q^2/4\pi\varepsilon_{\rm o} r$ or separation when they touch = 3.0 x 10 ⁻¹⁵ m or $V = q/4\pi\varepsilon_{\rm o} r$ $E_{\rm k} = (1.6 \text{ x } 10^{-19})^2/4\pi (8.9 \text{ x } 10^{-12}) (3.0 \text{ x } 10^{-15})$	C1	
	or $E_{\rm k} = (1.6 \text{ x } 10^{-19})^2 / 4\pi (8.9 \text{ x } 10^{-12}) (1.5 \text{ x } 10^{-15})$ 7.6(1) x 10 ⁻¹⁴ J (cao)	C1 A1	3
(ii)	incident proton will stop and the stationary proton will move off at velocity/speed of the incident proton or All KE/momentum is transferred to the stationary particle NB not they will not touch	B1	1
(iii)	protons travel in the opposite directions or velocity is reversed with initial speeds total momentum before = 0 so momentum after must be 0 or provided they have said that speeds are the same total KE is same before and after the collision or	M1 A1	
(iv)	the collision is elastic mention of strong nuclear force	B1	3
	or the repulsive force is overcome	C1	
	the strong nuclear force is greater than the electrostatic repulsion or the strong nuclear force is effective when the protons touch	A1	2

(c)	$E = mc^2$ mass increase = {(2 x 2.2) - (2 x 1.7)} x 10 ^{-27°} kg = 1.0 x 10 ⁻²⁷ kg	C1	
	or		
	calculates initial energy equivalence of 2 protons		
	or		
	final energy equivalence of 2 delta + particles	C1	
	8.6 or $9 \ge 10^{-11}$ J (i.e. allow 1sf) c.a.o.		
	(NB Adding on the answer to (b)(i) is correct but it has no influence		
	on the answer to 2 sf so its absence is condoned)	A1	3
		Total	13

(a)	Escape energy = $\frac{GMm}{r}$ or $\frac{GM}{r}$		
	or $\frac{GMm}{r} = \frac{1}{2}mv^2$	B1	
	6.7 x 10^{-11} x 6.0 x $10^{24}/6400$ x $10^{3} = 63$ MJ or		
	Calculates escape velocity using $\frac{GMm}{r} = \frac{1}{2}mv^2$ giving 11 200 m s ⁻¹		
	or recalls escape velocity as 11 000 or 11 200 m s ^{-1} or		
	Calculates velocity using $80 \times 10^6 = \frac{1}{2}v^2$ giving 12 600 m s ⁻¹	B1	
	63 MJ per kg so 80 MJ is more than enough (OWTTE) or	DI	
	Calculates the other velocity and draws a conclusion Recall of escape speed and showing escape energy = 63 MJ with conclusion gets last two marks		
	NB Arriving at 63 MJ using <i>mgh</i> is a physics error and gains no marks.		
	(These candidates get 63 MJ using $g = 9.8 \text{ m s}^{-2}$ and the radius of the Earth for h)	B1	3
(b)	Gases have to be given a velocity/momentum or		
	Gas must have an equal and opposite force on it to that on the rocket The gases have kinetic energy	B1 B1	
	or If all KE given to the rocket there is no gas ejected from the exhaust	M1	
	Momentum would not then be conserved	A1	2
(c)	fuel has to be provided to move the fuel needed for later parts of the journey		
	or to move the fuel itself	B1	

	Tota	l 7
(or other sensible reason for inefficiency)	B1	2
propulsion by burning fuel is inefficient		
or		
parts of the rocket that containing fuel are discarded on the journey		
or		
a lot of fuel is needed (for a small payload)(which is expensive)		
or		
low.		
the ratio of payload to original mass that has to be moved is very		

(a)	Superconductors have no resistance so no heating occurs or	B1	
	no $I^2 R$ losses	B1	2
(b)	Magnet moving producing changing magnetic flux $\frac{1}{2}$	B 1	
	$l^2 R$ losses/heating of track (due to induced/eddy currents in the (resistive) track) the direction of the induced current oppose the change producing it	B1	
	or mention of Lenz's law the induced current is in the magnetic field of the magnet so has a force on it	B1	
	or the induced current sets up a field that tries to prevent the magnet moving		
	or track behaves like a magnet and attracts the superconducting magnet The faster the motion or the greater the rate of change of magnetic flux,	B1	
	the greater the induced currents Faster vehicle leads to greater resistive/power losses	B1	
	or Faster vehicle leads to greater magnetic drag forces	B1	
	At least 3 marks for physics + use of Physics is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar		2
	At least 1 mark for physics + some incorrect work the use of Physics is accurate, but the answer lacks coherence or spelling, punctuation and grammar are poor		1
	the use of Physics is inaccurate, the answer is disjointed, with significant errors in spelling, punctuation and grammar		0 8
		Total 1	10

Questio	n 8		
(a)(i)	energy per pulse = $10\ 000/28 = 360\ (357)$ J	B1	1
(ii)	one photon $= hc/\lambda$ or hf	C1	
	energy of one photon = $1.86 \times 10^{-19} \text{ J}$		
	or 6.6 x 10^{-34} x 3 x $10^{8}/1060$ x 10^{-9} (ignore power of 10 for		
	wavelength) 1.221 (i.e. 1.12 (b) (i) (1.20 $\pm 10^{-19}$)	C1	2
	1.88 - 1.94x 10^{21} (i.e. their (a)(i)/1.86 x 10^{-19})	A1 Total	3 4
Questio	n 9		
(a)(i)	$v^2 = u^2 + 2as$	C1	
	$a = 48 \text{ m s}^{-2}$		
	(negative answer is a physics error; <i>u</i> and <i>v</i> wrong way round loses A1 mark)	A1	2
			2
(ii)	$v = u + at$ or $s = \frac{1}{2}(u + v)t$ or $s = ut + \frac{1}{2}at^2$ 1700 = 48 t or 30 000 = $\frac{1}{2}$ 1700 t or 850t or 30 000 = 0.5 x 48 t^2	B1	
	(N.B. seen explicitly)	B1	2
(b)(i)	PE = mgh or GMm $(1/r_1 - 1/r_2)$ or KE = $\frac{1}{2}$ mv ²		
	or one energy change calculated PE 588 000 J; KE 2 890 000 J (using $m = 2$ kg)		
	m = 2 kg or PE = 294 000 J or KE = 1 450 0 00 J (using $m = 2 \text{ kg}$) (using $m = 1 \text{ kg}$)	C1	
	Two energy changes calculated correctly using $m = 1$ or 2 kg	C1	
	3.5 (3.48) MJ (c.n.a.o.)	A1	3
(ii)	Energy supplied = 35 MJ	C1	
	or 0.35 MW (using power = 10 kW) but no second mark allowed	C1	
	Efficiency = $(9.9\% \text{ or } 0.099 \text{ if correct})$		
	(5.0% or 0.050 if fuel ignored) Condone 1sf answers in these cases		
	e.c.f. from (b)(i)		
	(1.7% if PE only calculated in (i) 8.3% if KE only calculated in (i))	A1	2
(c)	Diameter of the mirror needed $= 42 \text{ m}$	B1	1
(d)(i)	p/T = constant	C1	
	$P = 1 \ge 10^5 \ge 40\ 000/300 = 1.3 \ge 10^7 $ Pa	A1	2
(ii)	There will be little or no air/atmosphere (at 30 km height)	M1	
	The system works by air/gas expanding or the system works by heating air/gas	A1	

or the system works by heating air/gas or the thrust will be decreased or no thrust or no propulsion

or fewer molecules ejected so rate of change of momentum is lower
(or lower thrust
Allow B1 for problems associated with not capturing energy due to
the beam divergence beyond 30km (i.e. considering hydrogen power
as a different method of propulsion to overcome this problem)

Total 14