

Mark scheme June 2003

GCE

Physics B

Unit PHB4

Copyright © 2003 AQA and its licensors. All rights reserved.

PHB4

Question 1

(c)

800 MW/sensible power = 0.8/(3.53 + 0.8) = 0.185 or 18.5 %

(a)(i)	Unchanged		B1	
(ii)	½ OWTTE		B1	
(iii)	$T = 2\pi \sqrt{(M/k)}$ $T^2 = 4\pi^2 \times M/k \text{ (square and re-arrange)}$		B1 B1	
(iv)	T = 1/0.91 [= 1.1 s] $1.1^2 \times 190000 / 4\pi^2$ So $m_{\text{platform}} = \text{(cand ans for } M -5300\text{) leading to coranswer}$	rectly evaluated	C1 A1 B1	
(b)	v shape correct [cos graph] or v shape inverted [-cos graph]		B2 B1	
	k.e. always +ve k.e. freq doubles k.e. shape acceptable		M1 M1 A1	
(c)	max 4 from: mention of forced oscillation platform frequency always matches lorry's frequency mention of resonance small amplitude when well away from resonant free large amplitude at resonance [do not infer small this] resonant freq close to 0.91 Hz	quency	B4	16
Question	n 2			
(a)	$35 \times 10^3 \times 4200 \times 24$ = 3.53×10^9 W		C1 A1	
(b)	$3.53 \times 10^{9}/2.4 \times 10^{6}$ [ecf; ans to (a)/2 = 1.47 × 10 ³ kg s ⁻¹ [allow kg]	$.4\times10^6]$	C1 A1	

C1 A1

[ecf from ai]

6

Question 3

15 rev/s = 30π rad/s or v = 51/52 m s⁻¹ [could appear in subst] **B**1 (a)(i)

[or $mv^2/r \& v = \omega r$] **B**1 $F = mw^2r$ B1 appropriate sub leading to 7.33 kN [2+sf evaluation mandatory]

B1 to centre of rotor OWTTE (ii)

stress = F/AB1 (iii) **B**1 correct substitution from ai

[or $\varepsilon = 3.3 \times 10^{-4}$] $0.55 \times 2.09 \times 10^{7}/6 \times 10^{10}$ (iv) C1 = 0.192 mm**A**1

 $\frac{1}{2}$ x 7.32 x 10³ x 1.92 x 10⁻⁴ C1 (v) [ecf] = 0.702 J**A**1

volume pushed down [per second] = Av [mass = $\rho \times volume$] (b)(i)**B**1 Change of momentum [per second] = mass pushed down per second **B**1

Upward force = 900 N OWTTE [penalise use of 900g] (ii) C1 OR area swept out by blades = $\pi \times 0.55^2$ C1

 $900 = (0.55)^{2} \pi 1.3v^{2}$ $= 27 \text{ m s}^{-1}$ 15 **A**1

Question 4

 $= 0.35 \times 0.45 \times 6 \times 8.9 \times 10^{-12} / 3 \times 10^{-3}$ C1 (a)(i) $= 2.8 \times 10^{-9} \text{ F}$ **A**1

(ii) $12/10 \times 10^{3}$ C1 = 1.2 mA**A**1

 $10^4 \text{ x } 2.8 \text{ x } 10^{-9} = 2.8 \text{ x } 10^{-5} \text{ s}$ **B**1 (iii)

(iv) M1correct curvature, goes thru I_0 , not asymptotic to I axis **A**1 value about 1/3 after 1 time constant [between 0.3 and 0.4] **B**1 evidence of attempt to make ratios same at equal time intervals

(v) capacitance increases B1 **B**1 justification for C change (expect $C \propto 1/d$; inversely prop, or equⁿ) **B**1 current increases **B**1 justification for current increase

	Use of physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar and gains at least 3 marks for physics	B2			
	Use of physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor and gains at least 1 mark for physics	B1			
	Use of physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar	В0	14		
Question	15				
(a)	Use of 4×10^{14} Use of $c = f\lambda$ 7.5×10^{-7} m	C1 C1 A1			
(b)	line parallel to first intersecting x-axis at twice threshold freq	B1			
(i)	gradient is h so unchanged	B1			
(ii)	intersection with x-axis is double because $hf = \varphi$ at zero ke for e^{-}	B1	6		
Question 6					
(a)	$1.8/1.81 \times 10^{-11} \mathrm{m}$	B1			
(b)	circular bands of light on diagram	B1			
	diffraction/interference effect or electron $\lambda \approx$ atomic spacing in graphite	B1			
(c)	state correct and appropriate particulate aspect quote evidence <i>from this expt</i> that shows electrons possess aspect	B1 B1	5		
	e.g. electrons carry momentum/kinetic energy to screen excite other electrons in atoms/cause emission of energy/light or electrons carry charge can be accelerated by electric field/p.d. etc				
Question 7					
(a)(i)	use of pV = constant or $p_1V_1 = p_2V_2$ $p = 99 \times 3.50/4.15$ = 83.5 kPa	C1 C1 A1			

(ii)	change occurs quickly so cannot remain in thermal equilibrium <i>or</i> no time for heat to be lost; gas does work as it expands/adiabatic	B1	
(b)	99 [× 10^3]× $3.5 \times 10^{-4}/8.31 \times 291$ = $1.4(3) \times 10^{-2}$ moles	C1 A1	
(c)	molecules/particles have momentum momentum change at wall momentum change at wall/collisions at wall leads to force	B1 B1	
	[allow impulse arguments]	B1	
	less air so fewer molecules	B1	
	so change in momentum per second /rate of change is less [or per unit time]	B1	
	use of physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar and gains at least 3 marks for physics	B2	
	Use of physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor and gains at least 1 mark for physics	B1	
	Use of physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar	B0	13