

GCE

Physics B

Unit PHB4

Copyright ${ }^{\circledR} 2003$ AQA and its licensors. All rights reserved.

PHB4

Question 1

(a)(i) Unchanged
B1
(ii) $1 / 2$ OWTTE B1
(iii) $\quad T=2 \pi \sqrt{ }(M / k)$ B1
$T^{2}=4 \pi^{2} \times M / k$ (square and re-arrange) B1
(iv) $\quad T=1 / 0.91[=1.1 \mathrm{~s}]$ C1
$1.1^{2} \times 190000 / 4 \pi^{2}$ A1
So $m_{\text {platform }}=($ cand ans for $M-5300)$ leading to correctly evaluated B1 answer
$\begin{array}{lll}\text { (b) } v \text { shape correct } \quad[\cos \text { graph }] & \mathrm{B} 2 \\ \mathrm{~B} 1\end{array}$ or v shape inverted $\quad[-\cos$ graph $]$
k.e. always +ve
M1
k.e. freq doubles
M1
k.e. shape acceptable
(c) $\quad \max 4$ from:
mention of forced oscillation
platform frequency always matches lorry's frequency
mention of resonance
small amplitude when well away from resonant frequency
large amplitude at resonance [do not infer small amp point from this]
resonant freq close to $0.91 \mathrm{~Hz} \quad \mathrm{~B} 4$

Question 2

(a) $35 \times 10^{3} \times 4200 \times 24$
$=3.53 \times 10^{9} \mathrm{~W}$
C1
A1
(b) $\quad 3.53 \times 10^{9} / 2.4 \times 10$
[ecf; ans to (a)/2.4×10 ${ }^{6}$]
$=1.47 \times 10^{3} \mathrm{~kg} \mathrm{~s}^{-1}$ [allow kg]
(c) $800 \mathrm{MW} /$ sensible power
$=0.8 /(3.53+0.8)=0.185$ or 18.5% [ecf from ai]

Question 3

(a)(i) $15 \mathrm{rev} / \mathrm{s}=30 \pi \mathrm{rad} / \mathrm{s}$ or $v=51 / 52 \mathrm{~m} \mathrm{~s}^{-1} \quad$ [could appear in subst] appropriate sub leading to $7.33 \mathrm{kN} \quad[2+$ sf evaluation mandatory] B1
(ii) to centre of rotor OWTTE B1
(iii) \quad stress $=F / A$

B1
correct substitution from ai B1
(iv) $\begin{array}{lll}0.55 \times 2.09 \times 10^{7} / 6 \times 10^{10} & {\left[\text { or } \varepsilon=3.3 \times 10^{-4}\right]} & \text { C1 } \\ =0.192 \mathrm{~mm} & \text { A1 }\end{array}$
(v) $\quad 1 / 2 \times 7.32 \times 10^{3} \times 1.92 \times 10^{-4} \quad[$ ecf $] \quad \mathrm{C} 1$ $=0.702 \mathrm{~J}$

A1
(b)(i) \quad volume pushed down $[$ per second $]=A v \quad[$ mass $=\rho \times$ volume $] \quad$ B1 Change of momentum [per second] $=$ mass pushed down per second \quad B1 $\times v$
(ii) Upward force $=900$ N OWTTE [penalise use of 900 g]

OR area swept out by blades $=\pi \times 0.55^{2}$

$$
\begin{aligned}
& 900=(0.55)^{2} \pi 1.3 v^{2} \\
& =27 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

Question 4

(a)(i) $\quad=0.35 \times 0.45 \times 6 \times 8.9 \times 10^{-12} / 3 \times 10^{-3}$ C1
$=2.8 \times 10^{-9} \mathrm{~F}$ A1
(ii) $12 / 10\left[\times 10^{3}\right]$ C1
$=1.2 \mathrm{~mA}$ A1
(iii) $10^{4} \times 2.8 \times 10^{-9}=2.8 \times 10^{-5} \mathrm{~s}$ B1
(iv) correct curvature, goes thru I_{0}, not asymptotic to I axis M1
value about $1 / 3$ after 1 time constant [between 0.3 and 0.4] A1
evidence of attempt to make ratios same at equal time intervals B1
(v) capacitance increases B1
justification for C change (expect $C \propto 1 / d$; inversely prop, or equ ${ }^{\mathrm{n}}$) B1
current increases B1
justification for current increase B1

Use of physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar and gains at least 3 marks for physics B2

Use of physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor and gains at least $\mathbf{1}$ mark for physics

Use of physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar B0

Question 5

(a) Use of $4 \times 10^{14} \quad \mathrm{C} 1$

Use of $c=f \lambda \quad \mathrm{C} 1$
$7.5 \times 10^{-7} \mathrm{~m}$
A1
(b) line parallel to first intersecting x-axis at twice threshold freq B1
(i) gradient is h so unchanged B1
(ii) intersection with x-axis is double because $\mathrm{hf}=\varphi$ at zero ke for $\mathrm{e}^{-} \quad$ B1

Question 6

(a) $\quad 1.8 / 1.81 \times 10^{-11} \mathrm{~m}$
(b) circular bands of light on diagram
diffraction/interference effect or electron $\lambda \approx$ atomic spacing in graphite
(c) state correct and appropriate particulate aspect

B1
quote evidence from this expt that shows electrons possess aspect
e.g.
electrons carry momentum/kinetic energy to screen
excite other electrons in atoms/cause emission of energy/light
or
electrons carry charge
can be accelerated by electric field/p.d.
etc

Question 7

$$
\begin{array}{ll}
\text { (a)(i) of } p V=\text { constant or } p_{1} V_{1}=p_{2} V_{2} & \mathrm{C} 1 \\
p=99 \times 3.50 / 4.15 & \mathrm{C} 1 \\
=83.5 \mathrm{kPa} & \mathrm{~A} 1
\end{array}
$$

(ii) change occurs quickly so cannot remain in thermal equilibrium or no time for heat to be lost; gas does work as it expands/adiabatic B1
(b) $\quad 99\left[\times 10^{3}\right] \times 3.5 \times 10^{-4} / 8.31 \times \mathbf{2 9 1}$ C1
$=1.4(3) \times 10^{-2}$ moles A1
(c) molecules/particles have momentum B1
momentum change at wall B1
momentum change at wall/collisions at wall leads to force [allow impulse arguments] B1
less air so fewer molecules B1
so change in momentum per second /rate of change is less [or per unit time] B1use of physics terms is accurate, the answer is fluent/wellargued with few errors in spelling, punctuation and grammarand gains at least $\mathbf{3}$ marks for physicsB2
Use of physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor and gains at least 1 mark for physics B1
Use of physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar B0

