

GCE

Physics B

Unit PHB3

Copyright ${ }^{\odot} 2003$ AQA and its licensors. All rights reserved.

PHB3

Question 1

(a) 12 readings recorded times should be sensible and increase with
distance

B1
at least one t calculated correctly $\quad \mathrm{B} 1$
all value(s) of t (final column) given to 1 or 2 dps
(b)(i) an absolute uncertainty ($\max +-0.2 ; 1$ or 2 sf ; unit) B1 calculated from the range (e.g. $1 / 3$ or $1 / 2$ range, or mean deviation from t)

B1

B1

A1

B1
(iv) $\%$ uncertainty correctly calculated for d
$\%$ uncertainty correctly calculated for t
\% uncertainties added
C1
C1
consistent answer (1 or 2 sf)
M1

OR
upper bound found correctly
lower bound found correctly
valid method for \% uncertainty used
consistent answer (1 or 2 sf)
(c) $\quad t^{2} / d$ calculated or implied by alternate method
for all three sets of readings
consistent conclusion considering experimental uncertainty
I

OR
graph plotted with suitable axes
three points plotted with best fit line
consistent conclusion considering experimental uncertainty
(ii) initially velocity zero and acceleration constant B1
as velocity increases so does air resistance/drag/resistive forces (but not Friction alone) M1
so acceleration decreases A1
eventually air resistance $=$ accelerating force M1
so acceleration is zero A1
the cylinder reaches terminal/constant velocity

Note a good graphical answer could achieve the two \mathbf{B} marks but no QWC

Accurate use of physics terminology + fluent and well argued description + good spelling, punctuation and grammar + at least two marks for the physics

Good physics but poor spelling and/or grammar $\quad \mathbf{1}$
Good QWC with one physics mark $\quad 1$
No marks for the physics and/or disjointed answer with poor spelling and grammar

Question 2

(a)(i) sensible value of E recorded; with unit M1,
(ii) value of V recorded; value less than E

M1, A1 M1 consistent value for r with unit and 2 or 3 sf
(c) value of V recorded must be less than in (a)(ii)
$\begin{array}{ll}\text { (ii) } & \text { graph showing: } \\ & \text {-line starting from origin } \\ & \text {-correct curvature } \\ & \text {-approaching } E \text { (candidate's value) for large } \mathrm{R}\end{array}$
$\begin{array}{ll}\text { (ii) } & \text { graph showing: } \\ & \text {-line starting from origin } \\ & \text {-correct curvature } \\ & \text {-approaching } E \text { (candidate's value) for large } \mathrm{R}\end{array}$
B1
-correct curvature B1
$\begin{array}{ll}\text { (ii) } & \text { graph showing: } \\ & \text {-line starting from origin } \\ & \text {-correct curvature } \\ & \text {-approaching } E \text { (candidate's value) for large R }\end{array}$
B1
(b) correct substitution in formula

B1
1
(d)(i) Any one of the following, but no other alternatives
-concentration of solution
-size of rods
-separation of rods/wires
-depth of solution/immersion of rods
M1
1
(ii) corresponding answer to that given in (i)
-more charge carriers would mean lower resistance
-larger surface area would mean lower resistance
-larger separation would mean higher resistance
-larger effective surface area would mean lower resistance
(e) any five of the following -calculate r for different temperatures
-sensible range of temperatures suggested (e.g. room temperature to $70^{\circ} \mathrm{C}$, max $90^{\circ} \mathrm{C}$)
-at least five sets of readings specified
-method of measuring and controlling temperature given (e.g. water bath + thermometer or electric heater + thermostat $)$
-method of changing temperature described accept Bunsen burner -consideration of a fair test (e.g. same rod separation each time) -clear statement of how results will be presented (e.g. what to plot) -any reasonable improvement on the basic method (e.g. for each temperature use more than one load resistor and find an average, not just repeats and averages)

Accurate use of physics terminology + fluent and well argued description + good spelling, punctuation and grammar + at least three marks for the physics

Accurate use of physics terminology + comprehensible description but poor spelling and/or grammar

Less than two marks for physics and/or disjointed answer with poor spelling and grammar

Question 3

(a)(i) $\quad T_{o}$ recorded with unit must be in the range $2 . .3 \mathrm{~s}$ B1 at least 10 oscillations recorded B1
(ii) any two from:
reaction time/judging end of period
effect of draughts on the motion
difficulty establishing correct mode of oscillation amplitude too largeB2
(b)(c) table, neatly drawn with column for repeats and averages (including d^{2} and T^{2})
labels and units all columns (including $T^{2} / s^{2}, d^{2} / m^{2}$ and d / m) B1
5 sets of values: - 1 for each set missing and/or if $d=0.480 \mathrm{~m}$ not included and/or $d<0.160 \mathrm{~m}$ shown

B4
minimum of 5T recorded for each timing B1
minimum of 10T recorded for each timing B1
repeats of all timings (-1 for each one missing) B2
range of $d>=25 \mathrm{~cm} \quad \mathrm{~B} 1$
d values given to nearest $\mathrm{mm} \quad \mathrm{B} 1$
all times showing consistent dps B1
sensible T^{2} calculated correctly (check value in first row) B1
d^{2} calculated correctly (check value in last row) B1
$T^{2} 1$ or 2 dp and $d^{2} 3 \mathrm{dp}$ consistently B116
(d) axes correct way round and labelled with quantity B1
units given both axes allow ecf from table but not missing B1
sensible scales: zero origin and neither axis could be doubled M1
five points correctly plotted (-1 each error or missing point) A2
good best fit line (at least 4 points must be used) B1
general quality of graph see separate notes B1
(e)(i) triangle sufficiently large at least half length of drawn line B1
coordinates correctly taken from best fit line M1
correct calculation (2 or 3 sf) A1
(ii) gradient equated to 0.10 K M1
correct calculation of K allow ecf from (e)(i) A1
(iii) correct measurement of intercept M1
expressed with unit 2 or 3 sf allow unit ecf from graph A1
actual intercept in range 1.1..1.8 B1
3
2
3
(iv) intercept equated to 0.042 Km C1
correct rearrangement and substitution M1
OR
point accurately read from line C1
correct substitution into equation of line M1
correct calculation of m with unit and 2 or 3 sf provided K between400 and 600A13

