

GCE

Physics B

Unit PHB2

Copyright ${ }^{\odot} 2003$ AQA and its licensors. All rights reserved.

PHB2

Section A

Question 1

(a)(i) \mathbf{L} between UV and microwaves B1
(ii) \mathbf{U} between microwaves and medium radio waves B1 1
(b) gamma radiation
B1

Question 2

(a) place a sheet of aluminium/metal between source and detector

Sheet thickness stated 2 to 10 mm thick or several/a few mm thick plus
only gamma radiation can pass through such a sheet or alpha and beta will be absorbed/stopped by the sheet
(b) count rate $\propto 1 / r^{2}$ or evidence of $C_{1} / C_{2}=r_{2}{ }^{2} / r_{1}{ }^{2}$ C1

25 counts per second (allow cps or s ${ }^{-1}$)
A1
(Bq is a up)
(c) their value calculated in (b) plotted correctly and reasonable attempt
to draw correct curvature
Correct point (25 cps) plotted with correct curvature
A1
2
(mark quality: must not flatten out or rise at end of their line for large distances)

Question 3

(a)(i) diffraction/interference
(ii) $\sin \theta=\lambda / b$ allow for substitution with incorrect angle (or

C1 $1.22 \lambda b$)
angle for first minimum 0.011° (allow $0.0100-0.0115$)
C1
670 nm (allow $640-700 \mathrm{~nm}$) (allow $550 \mathrm{~nm}-580 \mathrm{~nm}$ if A1 $1.22 \lambda b$)
(b) $\quad 0.35 \sin 0.011$ or $0.35 \tan 0.011$ (ecf for angle from (a)(ii)) M1
$6.7(2) \times 10^{-5} \mathrm{~m}$

Question 4

(a)(i) meson (not muon)
(iii) 0
(b) baryon number $0 \rightarrow 0+0 \quad$ (satisfied or ${ }^{\mathrm{c}}$)
(allow statement that as these are all leptons baryon number is not relevant owtte)
lepton number $-1 \rightarrow-1+1 \quad x$ or not satisfied $\quad B 1$
charge $\quad(+) 1 \rightarrow(+) 1+0 \quad$ (satisfied or $\left.\mathrm{c}_{\mathrm{s}}\right) \quad$ B1

Question 5

(a)(i) correct substitution in $v=H d$ ignoring powers of 10

4600 (allow 4610 or 4620) (Mpc) A1
(ii) the distance to the edge/radius of the (observable) universe or the furthest galaxy that is visible
(b) \quad distance $=4600 \times 10^{6} \times 3.3$ (light years) (ecf from (a)(I))
(this is for conversion from Mpc to light years so allow if seen in a 'wrong method' calculation of time using distance $/ 3 \times 10^{8}$)
time for light to travel to Earth $=1.5(2) \times 10^{10}$ years (ecf from (a)(I)) NB not 'light years'

B1

B1
B1 3 C1 A1 2 B1 1 A1

Section B

Question 6

(a)(i) $2(.0) \times 10^{-5} \mathrm{~m}$ (i.e. allow 1 sf) B1
(ii) $\quad \lambda=4(.0) \times 10^{-4}(\mathrm{~m})$B1$v=f \lambda($ condone $c=f \lambda)$C1
3.0 MHz sf penalty appliesA1allow e.c.f. for omitting $10^{-4}(300 \mathrm{~Hz})$ but sf penalty applies for e.g.0.3 kHz)
(b)(i) ultrasound/wave/pulse/energy spreads out from the transmitter (beamnot uni-directional)
energy is absorbed by(or lost to) the transmitting medium/tissue/body
incident ultrasound/wave/pulse/energy is not all reflected (by the reflecting object)
or some is transmitted /absorbed by the organ or is reflected at different angles (so does not return to detector)
some ultrasound/wave/pulse/energy reflected by the skin since gel was not used

ANY 2

(ii) distance travelled 1200×95 or 114000 or 0.114 m
C1
(i.e. mark for use of velocity x time ignoring powers of 10)
0.057 m (allow answers in range 0.055 to 0.057)
A1
B1 Max 2
B1
B
2
Total
8

Question 7

(a)(i) $6.7(6.67) \times 10^{-3} \mathrm{~s}$
B1
1

(b) third harmonic: B1
three loops shown (condone wave 'snapshot')
maximum amplitude 1 mm clear from scale B1
(c) tension in the string (condone tighter string) M0
Increased tension increases frequency (not leads to faster A1
oscillations)or frequency is proportional to $\sqrt{\text { tension }}(\operatorname{not} \sqrt{ } T$ unless T isdefined)
plus any one from:
mass per unit length of the string M0
Increases mass per unit length reduces frequency A1or frequency is inversely proportional to $\sqrt{\text { mass per unit length }}$or frequency is proportional to $\frac{1}{\sqrt{\text { mass per unit length }}}$(not $1 / \sqrt{ } \mu$ unless μ defined)
density of the material (for same thickness) M0
condone heavier string/more weight or more mass increased density etc. reduces frequency A1
thickness of the string (for the same material) M0
increased thickness reduces frequency A1
Allow B1 for stating tension and mass per unit length as factors B1 without correct effects(d) Higher harmonics/frequencies (above 1000 Hz) are missed/notB1
(d) Higher harmonics/frequencies (above 1000 Hz) are missed/not transmitted or only frequencies between 100 Hz and 1000 Hz are transmitted NOTE:
Consequence is not essential but saying that the note will sound lower is 'Talk Out'
Allow quieter or poorer quality as consequences

Question 8

(a)(i) positron / positive electron / beta $+\quad\left(\operatorname{not} \beta^{+}\right)$ B1
(electron) neutrino B1
(condone as ecf 'antineutrino' if electron or beta- stated for other particle)
-1 from total for each additional particle but condone neon-21
(ii) 11

B1
1
(b)(i) activity after 1 half life $=0.75 \times 10^{10}(\mathrm{~Bq})\left(\right.$ half of $\left.1.5 \times 10^{10}\right)$

B1
number of particles after 1 half life $=2.5 \times 10^{11}$
B1
N corresponds to their A
The above may be seen substituted in $\lambda=A / N$
divides their activity by their number of nuclei; answer + unit
B1
3 (probability $=0.03 \mathrm{~s}^{-1}$ gets 2) (no sf penalty)
OR
Arrives at correct answer using half life $=21$ to 23 s and $\lambda=0.69 / t_{1 / 2}$
(ii) number of particles emitted per second, activity $=4.56(4.6) \times 10^{9}$
time read from graph 2 consistent with their activity
or their activity/(i) (i.e. numerical substitution correct)
(may be by implication in answer)
number of particles (cao) $(1.5-1.6) \times 10^{11}$

A1 3
Total
9

Question 9

(a)(i)	Doppler effect/shift	B1	1
(ii)	The universe is expanding (not The universe is moving outwards/away) or	B1	1
	The universe is the result of a 'big bang'		
(b)	change in wavelength $=60 \mathrm{~nm}$ and use of $\Delta \lambda / \lambda=v / c$ (condone either λ for this mark)	C1	
	3.0 to $3.1 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$	A1	2
	OR		
	Calculates one frequency correctly using $c=f \lambda$ $\left(5.08 \times 10^{14} \mathrm{~Hz}\right.$ or $4.62 \times 10^{14} \mathrm{~Hz}$)	C1	
	Arrives at 2.7 to $2.8 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ (using approximation $\Delta f / f=v / c$) or 3.0 to $3.1 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ (using $\Delta f / f^{\prime}=v / c$)	A1	

(c) $\quad d \sin \theta=n \lambda$ C1correct substitution for $d\left(2.22 \times 10^{-6} \mathrm{~m}\right.$ or $1 /\left(4.5 \times 10^{5}\right)$ seen andC1$n \lambda\left(2 \times 590 \times 10^{-9}\right)$(condone incorrect power of 10 for λ)
$32(.1)^{\circ}$ (or $32(.4)$ if d is rounded to $2.2 \times 10^{-6} \mathrm{~m}$) A1shown (not just waves spreading out from slits)
Max 4 for answer that refers only to two slits throughout mention of interference or superposition B1
light from slits is coherent (condone sources are coherent) B1
path difference (from slits) is a multiple of one wavelength B1
waves arrive in phase (condone light arrives in phase) B1
interference is constructive B1
waves add to produce larger amplitude/intensity/bright light B1(may be awarded for a good diagram that shows this)
explanation of different spectral lines for the same wavelength B1
lines are bright because waves from many slits are interfering(owtte)
At least 3 marks for physics + use of Physics is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar
At least 1 mark for physics + some incorrect work the use of Physics is accurate, but the answer lacks coherence or spelling, punctuation and grammar are poor
the use of Physics is inaccurate, the answer is disjointed, with (owtte)

Question 10

(a) $\quad 40 \mathrm{kHz}$(b) Higher frequencies will not be recognised/transmitted/lost

OR

Some peaks/troughs /variations will be missed
(c) Number of bits required per second for each station $=40000 \times 8$ (ecf from (a))

Total channels $=1.5 \times 10^{8} /$ bits per second required for each station (Answer 468 gets both marks NB NOT 469
(e.c.f. from(a) $1.875 \times 10^{7} /$ their (a), rounded down)

Allow B1 only for use of $20 \mathbf{k H z}$ and arriving at 937 stations
(d) Each signal is sampled in turn

Use time division multiplexing
Diagram to aid explanation B1

Signals sent in sequence $A B C D A B C D$ B1

Signals only use fibre for part of the time

Fibre-cable energy losses are less or Transmit further without repeater/boosters/amplifiers or Less frequent repeaters/boosting

Less noise/interference (condone no noise but not that it reduces noise)

Higher information handling capacity B1 or Greater number of stations can use a single fibre

Signal more secure/cannot be tapped B1

B1 (

At least 3 marks for physics + use of Physics is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar

At least 1 mark for physics + some incorrect work the use of Physics is accurate, but the answer lacks coherence or spelling, punctuation and grammar are poor
the use of Physics is inaccurate, the answer is disjointed, with

Max

0
2

