

GCE

Physics B

Unit PHB1

Copyright ${ }^{\circledR} 2003$ AQA and its licensors. All rights reserved.

PHB1

Section A

Question 1

Resistance decreasing with decreasing temperature above transition
temperature
Abrupt discontinuous vertical change to zero resistance at $-120^{\circ} \mathrm{C} \quad \mathrm{B} 1$
(a) Use of moment formula
$0.5 \times 550+1.2 \times 650=$ Weight $\mathrm{C} \times 2.1$
C1
Weight $\mathrm{C}=502 \mathrm{~N}$
A1
(b) Weight of see-saw $=9.8 \times 35=343 \mathrm{~N}$ or total people wt $=1200+\mathrm{C}$
ecf

B1
$\begin{array}{ll}\text { Total weight }=2.05 \mathrm{kN} & \mathrm{B} 1\end{array}$

Question 3

(a) (i) $22-10=12 \mathrm{~V}$

B1
(ii) use of $V=I R$

C1
$R_{\text {total }}=12 / 0.25=48$
C1
So $R=48-0.9=47.1 \Omega \quad$ A1
(b) \quad Charge $=I t=0.25 \times 8 \times 3600=7200 \mathrm{C} \quad$ [cnao]

B1

Question 4

(a) Time for one cycle

One cycle defined correctly in terms of diagram, can be on diagram

5

Question 5

(a) $\quad\left[V_{1}=V \times R_{1} /\left(R_{1}+R_{2}\right)\right]$

C1
$=16 \times 1200 / 2000$
$=9.6 \mathrm{~V}$
A1
(b) LDR resistance drops B1
voltmeter reading decreases
because more conduction electrons/charge carriers released

B1 B1

Question 6

(a) Electrons B1
(b) n : number of charge carriers per unit volume OWTTE B1 v : drift speed/velocity or average speed/velocity B1

Section B

Question 7

(a) $V \propto I$ [allow proportional] M1
physical condition constant A1
(b)(i) Line goes through $(12,2)$ [within one square]

B1
Straight line at origin aimed at $(1,0.5)$ and smooth curve (correct shape) beyond $(1,0.5)$

B1
Calculation clearly supporting second mark $[V=I R, I=0.5$, so $V=1] \quad \mathrm{B} 1$
(ii) Correct shape for $V+\mathrm{ve} \quad$ M1

Non-zero, positive breakaway from V-axis, $V<=1 \mathrm{~V}$; line not $>1 \mathrm{~V}]$ A1
Zero current for reverse bias explicit
B1

Question 8

(a)(i) $\quad 1 / 2 m v^{2}=1 / 2 \times 2.8 \times 10^{4} \times 71^{2}$

```
    \(=7.1 \times 10^{7} \mathrm{~J}\)
(ii) \(\quad\) decel \(=\) gradient of graph or \(a=(v-u) / t\) or \(\Delta v / \Delta t\) or evidence on graph
\(\begin{array}{ll}=(71-0) /(3.5-0) & \text { B1 } \\ \text { B1 }\end{array}\)
\(=20.3\left[\mathrm{~m} \mathrm{~s}^{-2}\right]\) B1
(iii) \([F=m a]\)
\(=2.8 \times 10^{4} \times 20.3\)
C1
\(=568 \mathrm{kN}\)
(b)(i) \(\quad[F=2 T \cos \theta]\) some use of resolved vector
\(T=F / 2 \cos \theta=568000 / 2 \times \cos 12.5^{\circ}\) (ecf)
\(=291000[\mathrm{~N}]\)
(ii) \(\quad[1 / 2 F \Delta l]\)
\(=1 / 2 \times 290000 \times 0.15\)
\(=22 \mathrm{~kJ}\) [21.8]
(c) \(\quad v^{2}=u^{2}+2 a s\)
\(a=v^{2} / 2 s=71^{2} / 124\) or alt process
\(=41 \mathrm{~m} \mathrm{~s}^{-2}\) [40.6]
(d) drawing correct, scale clearly stated, wind speed line \(>+2 \mathrm{~cm}\) or one correct calculation speed \(82 / 83 / 82.5 \mathrm{~m} \mathrm{~s}^{-1}\) [ \(80-84\) if drawn]
course \(14^{\circ}[12-16]\) west of north [346 \(\left.{ }^{\circ}\right] \quad\) B1

Sensible method for timing
 B1

\section*{max 2 for totally inappropriate method}

Analysis description
Further good detail (e.g. averaging or graphing if analysis mark scored/ignore air resistance with indication of effect on calculated \(g /\) in vacuum with good detail/electromagnetic release, must indicate logic of circuit/measure size of falling object if appropriate to expt/suitable described falling object/light gate used, show internal machine computation/datalogging with good detail/etc)

B1
[any mark can be scored for detail shown on diagram]
Use of physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar 6 and gains at least 3 marks for physics

Use of physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor and gains at least 1 mark for physics

Use of physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar

\section*{Question 10}
(a)(i) Use of \(R=\rho l / A\)

C1
\(=1.3 \times 10^{5} \times 12 \times 10^{-3} / 2.5 \times 10^{-3} \times 1.5 \times 10^{-3}\)
\(=4.2 \times 10^{8} \Omega\)
\(P=V^{2} / R\)
(ii) \(\quad \begin{aligned} & P=V^{2} / R \\ & =25 / 4.2 \times 10^{8}\end{aligned}\)

C1
\[
=6.0 \times 10^{-8} \mathrm{~W}
\]
(iii) total power \(=12 \times 10^{-8} \mathrm{~W}\) B1
(iv) \(\quad\) area \(=\left(7.5 \times 10^{-3}\right) \times 12 \times 10^{-3}\left[=90 \times 10^{-6} \mathrm{~m}^{2}\right]\)
p/area \(=12 \times 10^{-8} / 90 \times 10^{-6}\) \(=1.3 \mathrm{~mW} \mathrm{~m}^{-2}\)
(b)(i) area goes down 100 times, or quotes area \(3.75 \times 10^{-8} \mathrm{~m}^{2}\) ..... B1\(R=\rho(l \times 10) /(A \times 100)\), or quotes length \(12 \times 10^{-4} \mathrm{~m}\)[so resistance goes up 10 times]B1
(ii) power dissipated is reduced [power down 10 times] ..... B1
through area that is smaller by bigger factor than power ..... B1

\section*{Question 11}
Energy extracted from internal energy of rocks ..... B1
origin: original formation of Earth (e.g. volcanic activity) or present radioactive decays ..... B1
heat used to produce steam ..... B1
for conventional turbine-generator system ..... B1
advantage no fuel cost/no pollution/etc [not no running costs] ..... B1
disadvantage sites limited by geology/expensive set-up only if ..... B1 comparison with other energy source/steam/water often very corrosive \(\therefore\) high maintenance

Use of physics terms is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar and gains at least 3 marks for physics

Use of physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor and gains at least \(\mathbf{1}\) mark for physics

Use of physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar```

