

GCE

Physics B

Unit PHB3

Copyright ${ }^{\circ} 2003$ AQA and its licensors. All rights reserved.

Unit 3: Practical Examination

Notes for guidance

Letters are used to distinguish between different types of marks in the scheme.

M indicates obligatory method mark

This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates compensation method mark
This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates accuracy mark
These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates independent mark

This is a mark which is independent of M and C marks.
Note: Where a correct answer only (c.a.o.) is required, this means that the answer must be as in the marking scheme, including significant figures and units.

Where an error carried forward (e.c.f.) is allowed by the marking scheme for an incorrect answer, e.c.f. must be written on the script if an error has been carried forward.

Instructions to examiners

1 Give due credit to alternative treatments which are correct. Give marks for what is correct; do not deduct marks because the attempt falls short of some ideal answer. Where marks are to be deducted for particular errors specific instructions are given in the marking scheme.

2 Do not deduct marks for poor written communication. Refer the script to the Awards meeting if poor presentation forbids a proper assessment. In each paper candidates may be awarded up to two marks for the Quality of Written Communication in cases of required explanation or description. However, no candidate may be awarded more than the total mark for the paper. Use the following criteria to award marks:

2 marks: Candidates write with almost faultless accuracy (including grammar, spelling and appropriate punctuation); specialist terms are used confidently, accurately and with precision.

1 mark: Candidates write with reasonable and generally accurate expression (including grammar, spelling and appropriate punctuation); specialist terms are used with reasonable accuracy.

0 marks: Candidates who fail to reach the threshold for the award of one mark.
3 An arithmetical error in an answer should be marked A.E. thus causing the candidate to lose one mark. The candidate's incorrect value should be carried through all subsequent calculations for the question and, if there are no subsequent errors, the candidate can score all remaining marks (indicated by ticks). These subsequent ticks should be marked C.E. (consequential error).

4 With regard to incorrect use of significant figures, normally a penalty is imposed if the number of significant figures used by the candidate is one less, or two more, than the number of significant figures used in the data given in the question. The maximum penalty for an error in significant figures is one mark per paper. When the penalty is imposed, indicate the error in the script by S.F. and, in addition, write S.F. opposite the mark for that question on the front cover of the paper to obviate imposing the penalty more than once per paper.

5 No penalties should be imposed for incorrect or omitted units at intermediate stages in a calculation or which are contained in brackets in the marking scheme. Penalties for unit errors (incorrect or omitted units) are imposed only at the stage when the final answer to a calculation is considered. The maximum penalty is one mark per question.

6 All other procedures, including the entering of marks, transferring marks to the front cover and referrals of scripts (other than those mentioned above) will be clarified at the standardising meeting of examiners.

Section A

Question 1

(a)(i) record of length $\approx 0.06 \mathrm{~m}$ B1
All to nearest mm 1
penalise and u.p. B1
A maximum of 1once each in (a)B11
(iv) correct subtraction of l from l_{1} B1
correct subtraction of l from l_{2} B12
(b)(i) attempt to take ratios or plot W vs Δl graph M1
both ratios correctly calculated or straight line graph B1
relevant comment relating to comparing ratios or line through origin B13
(ii) comment relating to precision of measurement or equivalent sentiments or deviations from the line B11
(c)(i) imprecise statement regarding equality of moments C1
precise statement including mention of equilibrium A1
(ii) both moments correctly calculated M1
and equated A12
(d) idea of keeping the rod horizontal for each position of unknown weight B1
idea of adjustment of spring suspension position B1
s or d held constant B1
$5-10$ sets of readings of d (or s) and Δl B1
idea of working in elastic region of springs B1
use of k to calculate T or values of T from calibration graph B1
rod length $30 \mathrm{~cm}-100 \mathrm{~cm}$ B1
position of weight increments $5-10 \mathrm{~cm}$ (consistent with chosen length) B1
graph of T vs d or $T s$ vs d or $k \Delta l s$ vs d etc B1
gradient $=W / s$ or equivalent B1
the use of physics is accurate, the answer is fluent/well argued with few errors in spelling, punctuation and grammar (must gain at least 3 for Physics)Q2
the use of physics is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor
the use of the physics is inaccurate, the answer is disjointed with significant errors in spelling punctuation and grammar.

Question 2

(a) value of $V \approx 50 \mathrm{mV}$ (no sfp) B1
(b)(i) substitution of values without considering powers substitution of values with correct use of powers
1 up for the question C1 correct value for $R_{\mathrm{L}} \approx 3000 \times V(2 / 3 \mathrm{sf})$ C1
3
(ii) sensible estimate for uncertainty in voltmeter (same no. of d.p. as reading as supplied by centre) B1
(iii) $0.1+(\mathrm{b})($ ii $)$ B11
(iv) at least two \% errors seen to be added C1
$6 \%+(\mathrm{b})(\mathrm{ii}) /(\mathrm{a})+(\mathrm{b})(\mathrm{iii}) / 1.5($ ignore sf) A12
(c) $E=I\left(R_{\mathrm{L}}+R\right)$ or V / R_{L} or $\mathrm{E} / 5.0 \times 10^{3}$ C1
correct value for candidate's $I \approx 0.3 \mathrm{~mA}$ (ignore sf) ecf A12
(d)(i) $V_{\text {red }}$ value B1
$V_{\text {green }}$ value B1
$V_{\text {blue }}$ value B1
(ii) appropriate voltage scale marked on BI3
values for red, green and blue in correct order BI
sensibly shaped curve for candidate's points (3 points must be seen)
(e) thickness of filters B1
distance between lamp/filament and LDR B1
allow one of background illumination/supply voltage /emf of cell/ resistance
of resistor - must be clear reference to LDR circuit
Max 2
(f) same general shape as candidate's line B1
shifted below the original line and labelled unambiguously B1

Section B

Question 3

(a)(i) value within 2 mm of that supplied by centre B1
value halved correctly (nearest mm or 0.5 mm) in m B1
apply one up to
apply one up to 2
(ii) repeat and average of reading distances B1
sensible procedure - use of set square/graph paper B1
not simply using ruler etc 2
(b)(i) y value recorded in m B1
(ii) correct addition B1
(iii) timing for minimum of 20 oscillations* B11
repeat* M1
average* and period correctly calculated ($\approx 1.2 \mathrm{~s}$)
*half oscillations and number in fixed time lose these 3
(c)(i) well-planned, neatly drawn table with columns for repeats and averages, data B1
entered neatly, no overwriting, crossing out etc. B1
all quantities included and units 2
(ii) 4 further sets of values (correct trend $y \uparrow$ as $T \downarrow$)* * lose 2 if less than 10 B4
4 sets further sets of repeats and averages data to consistent d.p. within each column oscillations used B2
T^{2} correctly calculated (check one) single oscillations lose B1
T^{2} to $1 / 2 \mathrm{~d} . \mathrm{p}$. all 4 B1 9
(d) axes correct way round and quantities correctly labelled B1
units on axes correct or consistent with those in table B1
scales non-awkward (as large as possible with d scale starting at 0 and appropriate false origin for T^{2}) M1
five points correctly plotted (-1 for each omission)* lose if poor scale A2
best straight line (0 if less than four points plotted) B1
overall quality of graphical work B17
(e) large triangle used ($>1 / 2$ plotted area in either direction) B1
co-ordinates correct M1
correct calculation with value to 2 or 3 s.f $(k \approx 4)$ ignore sign; no unit penalty A13
(f) co-ordinates of point on line used B1
correct substitution of values C1
correct calculation of value of $h(\approx 0.500 \mathrm{~m})$ (u.p.) ecf A1
(g) Clear description of complete oscillations described B1
20+ oscillations B1
repeat and average of values B1
timing from centre of oscillation/sensible use of fiducial point/sensible explanation of avoiding parallax B1further repeats/use of larger $n /$ use of electronic instead of manual timing /logged using position or displacement sensor/ light gates and timer -no credit for idea of using a computerB1
the use of physics is accurate, the answer is fluent/well argued with few errorsin spelling, punctuation and grammar(must gain at least 2 for Physics)Q2
the use of physics is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor (must gain at least 1 for Physics) Q1
the use of the physics is inaccurate, the answer is disjointed with significant errors in spelling punctuation and grammar. Q0
Max 2
Total 38

