

GCE

Physics B

Unit PHB3

Copyright © 2002 AQA and its licensors. All rights reserved.
The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth \&t Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1H0
Kathleen Tattersall: Director General

Unit 3: Practical Examination

Notes for guidance

Letters are used to distinguish between different types of marks in the scheme.
M indicates OBLIGATORY METHOD MARK
This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK

This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK

These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK

This is a mark which is independent of M and C marks.
Note: Where a correct answer only (c.a.o.) is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.

Where an error carried forward (e.c.f.) is allowed by the Marking Scheme for an incorrect answer, e.c.f. must be written on the script if an error has been carried forward.

Instructions to Examiners

1 Give due credit to alternative treatments which are correct. Give marks for what is correct; do not deduct marks because the attempt falls short of some ideal answer. Where marks are to be deducted for particular errors specific instructions are given in the marking scheme.

2 Do not deduct marks for poor written communication. Refer the script to the Awardsmeeting if poor presentation forbids a proper assessment. In each paper candidates may be awarded up to two marks for the Quality of Written Communication in cases of required explanation or description. However, no candidate may be awarded more than the total mark for the paper. Use the following criteria to award marks:

2 marks: Candidates write with almost faultless accuracy (including grammar, spelling and appropriate punctuation); specialist terms are used confidently, accurately and with precision.

1 mark: Candidates write with reasonable and generally accurate expression (including grammar, spelling and appropriate punctuation); specialist terms are used with reasonable accuracy.
0 marks: Candidates who fail to reach the threshold for the award of one mark.
3 An arithmetical error in an answer should be marked A.E. thus causing the candidate to lose one mark. The candidate's incorrect value should be carried through all subsequent calculations for the question and, if there are no subsequent errors, the candidate can score all remaining marks (indicated by ticks). These subsequent ticks should be marked C.E. (consequential error).

4 With regard to incorrect use of significant figures, normally a penalty is imposed if the number of significant figures used by the candidate is one less, or two more, than the number of significant figures used in the data given in the question. Themaximum penalty for an error in significant figures is one mark per paper. When the penalty is imposed, indicate the error in the script by S.F. and, in addition, write S.F. opposite the mark for that question on the front cover of the paper to obviate imposing the penalty more than once per paper.

5 No penalties should be imposed for incorrect or omitted units at intermediate stages in a calculation or which are contained in brackets in the marking scheme. Penalties for unit errors (incorrect or omitted units) are imposed only at the stage when the final answer to a calculation is considered. The maximum penalty is one mark per question.

6 All other procedures, including the entering of marks, transferring marks to the front cover and referrals of scripts (other than those mentioned above) will be clarified at the standardising meeting of examiners.

Question 1

(a)(i)
(ii) observations made and recorded, nearest cm or $1 / 2 \mathrm{~cm} \quad \mathrm{C} 1$ repeat three times and correct average, 1 d.p. only or whole no., no fractions
$[\Delta E]=m g h$ or $m g \Delta h$
shows $h / x^{2}=k / 2 m g$
states m, g constant
uncertainty in h [allow $1 / 2-2 \mathrm{~cm}$]; unit essential
uncertainty in \times [allow $1-5 \mathrm{~mm}$]; unit essential
percentage uncertainty calculation
[$100 \times \Delta h / h ; 100 \times \Delta x / x]$
correct combination of fractional uncertainties
$[\% h+2 \times \% x]$
calculation of both h / x^{2} correct
h used in calculation in not c of g in spring (as in equation)
or large error prevents judgement
(d)
store spring potential energy [goes...] B1 and 2 of:
to kinetic energy
all ke is transferred to gravitational pe at top B1
where speed is zero
[on return to bottom]
to sound heat deformation friction [only one end-point required]
source 1 B1 B1 B1 C1

2
1

2

1
1

2

2

4
effect on data B1
source 2 B1
effect on data B1
examples:
friction twixt sping and rod/ value lower/ parralax error/
either way.

The use of physics terms is accurate, the answer is fluent/ well argued with few errors in spelling, punctuation and grammar
(must gain at least $\mathbf{3}$ for Physics)
the use of physics terms is accurate, the answer lacks coherence or the spelling, punctuation and grammar are poor
(must gain at least 1 for Physics)
the use of physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar are poor

Question 2

(a)
carries out expt for both cards and trend correct repeats and averages correctly, same rule as Q1
states $n \propto 1 / \mathrm{A}$ (algebraically) B1
so $n A=$ constant or $\mathrm{n}=\mathrm{k} / \mathrm{A} \quad \mathrm{B} 1$
calculation for both cards
decision correct (be generous, but there must be a decision)
B1
plot n against $1 / A, A$ against $1 / n, n$ against A, A against n, axes labelled B1
line correct [straight line for A vs $1 / n$, curvature correct for n vs A]B1
extremes correct [through $(0,0)$ for A vs $1 / n$, asympotic for $n \operatorname{vs} A$]

B1
(d) up to five good points

B5
uses five cards or more
suitable range of areas (10-100)
repeats measurement and averages
method for ensuring $1 / 2$ amplitude point is accurate
reliable release of mass
mass included in calculation
keep initial amplitude same
small amplitutude
avoid draught
parallax error prevention
any other good detail
(e) mention of air resistance B1
air resistance increases with speed B1
so force is maximum in centre of oscillation B1
and zero at maximum amplitude B1
The use of physics terms is accurate, the answer is fluent/ well argued with few errors in spelling, punctuation and grammar
(must gain at least 3 for Physics)
the use of physics terms is accurate, the answer lacks coherence or the spelling, punctuation and grammar are poor

(must gain at least 1 for Physics)

the use of physics terms is inaccurate, the answer is disjointed with significant errors is spelling, punctuation and grammar are poor

2

4

Question 3

(a)(i)
(ii)
(iii)
(b)(i)
(ii)
(c)(i)
(ii)
quantities and units
6 sets of values
repeats and averages 6 readings of s
(-1 for each missed repeat; not below 0) B3
value in (a) (i) range s to $0.40 \mathrm{~kg} \quad \mathrm{~B} 1$
consistent d.p. in \mathbf{s} B1
all d values given to nearest mm , consistently B1
$1 / s$ calculated correctly, and expressed to 2 s.f. consistently condone 3 s.f.
(d)
axes correct and labelled with quantity B1 units on axes [ecf. from table, except in case of no unit]
scales non-awkward: points plotted in at least
$5 \times 62 \mathrm{~cm}$ squares including intercept if on grid
six points correctly plotted (-1 for each error; not below 0)
(-2 if awkward scale, -2 if ≤ 3 squares used for ${ }^{1} / \mathrm{s}$ range, -2 if plot off grid)

B2
best straight line (mark lost if fewer than 5 points)
quality of graphical work
(e)(i) large triangle used or sufficiently spread co-ordinates \geq half drawn line B1
co-ordinate correct or sides of triangle correct M1
correct calculation to $2 / 3$ s.f., must be -ve for this mark A1
(ii) gradient $=-1 / 5(M+0.40)$ seen
or subst. point ONLINE into equation M1
clear attempt to rearrange equation their answer correct for $M, 2 / 3$ s.f. with unit
(iii) correct measurement of intercept condone intercept on paper but off grid
unit $\left(=k \mathrm{~g}^{-1}\right)$ correct and 2 to 4 sf answer
use of intercept $=4 /(M+0.40)$ allow ecf. from (iii)
their answer correct for $M, 2 / 3 \mathrm{sf}$. with unit
B1
C1
A1
B1
B1
B1
B1
C1

A1

B1 B4B2

B1
B1

