

GCE

Physics B

Unit PHB2

NOTES

Letters are used to distinguish between different types of marks in the scheme.
M indicates OBLIGATORY METHOD MARK
This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK
This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK
These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK

This is a mark which is independent of M and C marks.
e.c.f. is used to indicate that marks can be awarded if an error has been carried forward. This is also referred to as a 'transferred error' or 'consequential marking'.

Where a correct answer only (c.a.o.) is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.
c.n.a.o. is used to indicate that the answer must be numerically correct but the unit is only penalised if it is the first error or omission in the section (see below).

Where an error carried forward (e.c.f.) is allowed by the Marking Scheme for an incorrect answer, e.c.f. must be written on the script if an error has been carried forward.

Only one unit penalty (u.p.) in Section A and one unit penalty in Section B of this paper.
Only one significant figure penalty (s.f.) in Section A and one significant figure penalty in Section B of this paper. Allow 2 or 3 s.f. unless otherwise stated.
Significant figure penalties include recurring figures and fractions for answers

Section A: 25 marks

1
(a)

$$
v=f \lambda \text { or } 330 / 512
$$

C1
0.64(5)m A1
(b) (i) very approximately size of doorway is same as λ of note
(ii) $\sin \theta=\lambda / b$ seen
$\theta=\sin ^{-1}($ answer to (a) $/ 0.81)$ or $\sin \theta=$ ans to (a) $/ 0.81$ $52.7^{\circ} / 52.8^{\circ} / 52.2^{\circ} / 53^{\circ}$

2
(a) (i) mention of radioactivity/decay/nuclear radiation
ever present/independent of source being in proximity/always there/cannot be eliminated
(ii) radon/rocks/cosmic rays/nuclear fallout / medicine / space / sun
(b) $\quad A$-activity/rate of decay
λ - decay constant/probability of decay B1
$N-$ number of nuclei (radioactive atoms) present not number of isotopes/atoms/particles

3
(a) source/scatterer/detector labelled

	M1	
vacuum	A1	
(thin $/$ gold $/$ metal $)$ foil	A1	3

(b) some backscattered $\left(>90^{\circ}\right)=>\alpha$'s and nuclei both + ve few deflections/most pass through \therefore nuclei small

4
(a) wave speed is very much greater than source speed
(b) (i) substitution condone missing 0.5
$10.9 / 11.0 \mathrm{~ms}^{-1}$ condone $21.9 \mathrm{~ms}^{-1}$
(ii) correct answer without power considered $2.5 \times 10^{3} \mathrm{~Hz}$

5
2 quarks
down and anti-up

$$
-1 / 3+(-2 / 3)=-1
$$

C1

B1

B1 B1

Section B: 50 marks

6
(a)

$$
\begin{aligned}
& -1 / 3 \rightarrow+2 / 3-1+0 \\
& 0 \rightarrow 0+1-1 \\
& +1 / 3 \rightarrow+1 / 3+0+0 \\
& \text { allow }+\mathbf{2 / 3} \mathbf{- 1} \text { ok } \\
& \text { allow }+\mathbf{1} \mathbf{- 1} \mathbf{~ o k} \\
& \text { not } \mathbf{1 / 3} \mathbf{~ o k}
\end{aligned}
$$

condone
B1
$0 \rightarrow 0+1-1 \quad$ missed
zeros
$\begin{array}{ll}\text { (b) diagram of method based on range/absorption/deflection } & \text { B1 } \\ \text { explanation of what is being done } & \text { B1 }\end{array}$
detector named
differentiation of α, β and γ i.e. clearly β alone
cloud chamber diagram
sensible description of tracks of β 's B1
no other type of track present
max 3 (+2) for cloud chamber
The use of physics terms is accurate, the answer is fluent/ well argued with few errors in spelling, punctuation and grammar. The candidate must have scored at least 3 marks for physics to access this.

The use of physics terms is accurate, but the answer lacks coherence or the spelling, punctuation and grammar are poor. The candidate must have scored at least 2 marks for the physics to access this.

The use of physics terms is inaccurate, the answer is disjointed with significant errors in spelling, punctuation and grammar.
(c) (i) $1.24-1.26 \times 10^{-13} \mathrm{~J}$
(ii) energy is shared between electron and antineutrino total energy is constant/ range of β energies

B1 B1

B1
B1

1

 B11

7
(a) tension - newtonmeter B2
or tension - from mass on balance B1
and - multiply by $g \quad$ B1
mass - balance/scales B1
length - rule/tape/ruler B1
(b) frequency read from signal generator when standing wave produced/use of strobe etc.

B1
measure λ using several loops or full length of string B1
node \rightarrow node/ each loop $=\lambda / 2$
B1
use of $c=f \lambda$
B1
(c)
$\lambda=0.40$ (m)
C1
$c=60.8\left(\mathrm{~ms}^{-1}\right)$ e.c.f. from λ
C1
$T=7.06(\mathrm{~N})$ C1
$\mu=1.9(1) \times 10^{-3}\left(\mathrm{~kg} \mathrm{~m}^{-1}\right)$ c.a.o. A1
$m=2 \times \mu$ value ($=3.8 \times 10^{-3} \mathrm{~kg}$ or equivalent unit) e.c.f. s.f.p. applied only at this answer

B1

8
(a)
(b) (i) $d=1.0 \mathrm{x}^{-4} \mathrm{~m}$
use of $\lambda=d \sin \theta$ or substituted values
$\theta_{1}=0.286^{\circ} / 0.29^{\circ}$
(ii) $\Delta \theta=0.115^{\circ}$ (c.a.o.)
(iii) width $=4.0 \times 10^{-3} \mathrm{~m}$ or $3.9 \times 10^{-3} \mathrm{~m}$ (e.c.f. for $2 \times \sin (\mathrm{b}(\mathrm{ii}))$ or $2 \mathrm{x} \tan$ (b(ii)); allow 1 s.f.)

C1 C1 C1 A1

Total

)
filament lamp/sun etc.

| (a) (i)continuously (continually) varying (changing)
 quantity/voltage/amplitude
 mention of frequency | B1 |
| :--- | :--- | :--- |
| M | |

(ii) human hearing $20 \mathrm{~Hz}-15-20 \mathrm{kHz}$ (or range $15-20 \mathrm{kHz}$) B1
telephone bandwidth much smaller
full bandwidth not needed for acceptable communication
(b)
(i) $\quad f=1 / T$

1250 Hz
(ii) $2 \times(\mathrm{b})$ (i) answer (e.c.f.)
allow 2500 Hz but otherwise s.f.p.
(iii) capacity of transmission medium usually much greater than that needed for single signal/spare capacity

B1
digital or sampled signals used B1
each signal broken into a fixed chunks (of data) B1
sent sequentially B1
each signal recompiled B1
need for synchronisation B1

The use of physics terms is accurate, the answer is fluent/ well argued with few errors in spelling, punctuation and grammar. The candidate must have scored at least 3 marks for physics to access this.

The use of physics terms is accurate, but the answer lacks coherence or the spelling, punctuation and grammar are poor. The candidate must have scored at least 2 marks for the physics to access this.

The use of physics terms is inaccurate, the answer is disjointed

Total

