

GCE

Physics B

Unit PHB1

NOTES

Letters are used to distinguish between different types of marks in the scheme.
M indicates OBLIGATORY METHOD MARK
This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK
This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK
These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK

This is a mark which is independent of M and C marks.
e.c.f. is used to indicate that marks can be awarded if an error has been carried forward. This is also referred to as a 'transferred error' or 'consequential marking'.

Where a correct answer only (c.a.o.) is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.
c.n.a.o. is used to indicate that the answer must be numerically correct but the unit is only penalised if it is the first error or omission in the section (see below).

Where an error carried forward (e.c.f.) is allowed by the Marking Scheme for an incorrect answer, e.c.f. must be written on the script if an error has been carried forward.

Only one unit penalty (u.p.) in Section A and one unit penalty in Section B of this paper.
Only one significant figure penalty (s.f.) in Section A and one significant figure penalty in Section B of this paper. Allow 2 or 3 s.f. unless otherwise stated.
Significant figure penalties include recurring figures and fractions for answers

Section A: 25 marks

Question 1

 resistance drops to zero (or equivalent statement about current)temperature reduced below transition or critical temperature (not 'low temperature')
[powerful electromagnets +] application [medical/computers/etc]
B1

Question 2

(a) indication of complete circuit with correct components must show variable resistor/pot divider/variable power supply circuit to be complete
thermistor symbol or resistor labelled 'thermistor'
can omit ammeter/voltmeter here
voltmeter correctly placed B1
ammeter correctly placed B1
(b) (i) $\quad \mathrm{V}=(6 / 1000) \times 2000 \quad$ C1
$=12 \mathrm{~V} \quad \mathrm{Al}$
(ii) correct readoff B1
power $=I \times \mathrm{V} \quad$ M1
$=0.34 \times 10^{-3} * 12=4.1 \mathrm{~mW} \quad[$ e.c.f. from $I] \quad$ A1
(c) decrease in resistance B1
more charge carriers released at high temperature
B1

Question 3

(a) equilibrium statement B1 $\begin{array}{ll}\text { clockwise moment }=\text { anticlockwise moment } & \text { B1 }\end{array}$ sum of anticlockwise moments = sum of clockwise
(b) attempt to use moment formula \quad B1
[force x distance is needed as minimum]
$T \times 0.03=5.0 \times 0.24+2.0 \times 0.47$
$=1.20+0.94=2.14 \mathrm{~N} \mathrm{~m} ; \mathrm{T}=71 \mathrm{~N}(71.3)$
(b)
$=1.20+0.94-2.14 \mathrm{~N} \mathrm{~m}, \mathrm{~T}=71 \mathrm{~N}(71.3)$

Question 4

tension $=210 \cos 30$ or $=210 \sin 30 \quad \mathrm{C} 1$
both calculated correctly $[\mathrm{B}=182 \mathrm{~N} ; \mathrm{C}=105 \mathrm{~N}] \quad \mathrm{C} 1$
either calculation correctly attributed to T_{B} or T_{C}
A1

Question 5

use of $m g$ with $g=9.8[$ use of $g 10-1] \quad$ B1
energy $=1 / 2 F \quad l=1 / 2(1200 \times 9.8) \times 0.03 \quad$ M1
$=180 \mathrm{~J}$ [176] [omission of g will score only 1]

Section B

Question 6

(a) charge $=$ area under graph of current vs time for $1 \mathrm{~s} \quad$ B1
area of one triangle correctly calculated $(0.02 \mathrm{C}) \quad$ B1
$=0.1 \mathrm{C}$ in one second because 5 triangles
[allow full credit for counting squares approach]
(b) $\quad \begin{aligned} & \text { read-off } 0.15-0.16 \mathrm{~A} \\ & \text { so } V=0.15 \times 50=7.5 \mathrm{~V}\end{aligned}$
so $V=0.15 \times 50=7.5 \mathrm{~V}$
read-off as 0111

Question 7

(a) (i) $270 \times 4=1080 \mathrm{kN} \quad$ B1
(ii) $\quad \begin{aligned} & F=m a \\ & a=F / m=1080000 / 320000=3.38[3.375]\left[\mathrm{m} \mathrm{s}^{-2}\right]\end{aligned}$
allow ecf from (ai)
(b) (i) $t=v / a=90 / 3.37 \quad$ e.c.f.
$=26.7 \mathrm{~s}$
(ii) effective force $=m a=320000 \times 2=640 \mathrm{kN}$
friction is difference between engine thrust and effective force so frictional force $=1080-640=440 \mathrm{kN}$
里

$$
2 a s=v^{2}
$$

(c) $2 a s=v^{2} \quad$ B1
leading to $2.03[2.025] \mathrm{km} \quad \mathrm{B} 1$
(d) $t=v-u / 2=(260-90) / 2$
$=85 \mathrm{~s}$
(e) level because lift = weight \quad B1
zero acceleration because thrust = drag
no resultant force in either direction OR clear 'equal and opposite'
statement
the use of Physics terms is accurate; the answer is fluent/well argued with few errors in spelling, punctuation and grammar.
(must gain at least 2 for Physics)
the use of Physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor

(must gain at least 1 for Physics)

the use of Physics terms is inaccurate; the answer is disjointed with significant errors in spelling, punctuation and grammar

B1 B1 B1 B1
A1

B1
B1

B1
B1
B1 B1

Total 6

Question 8

(a) $I=P / V=48 / 12=4.0 \mathrm{~A}$

B1

B1
ecf their (a)/8
(ii) $R=V / I=12 / 0.5$
$=24 \mathrm{ohm}$

M1
A1
(c) (i) candidate (a) value B1
(ii) $\begin{array}{ll} & 1.50 / 4 \\ & =0.37(5) \text { ohm [ecf] }\end{array}$

M1
A1
(d) failure of one element breaks whole unit B1
(e) (i) ohm-metre [allow correct symbols]
(ii) $\quad=R A / l\left[=0.375\right.$ (e.c.f.) $\left.\times\left(3.0 \times 10^{-3}\right) \times\left(0.12 \times 10^{-3}\right) / 0.75\right]$ $=1.8 \times 10^{-7}[\Omega \mathrm{~m}]$

M1
A1

1

1

2

1

2

1

1

2

Question 9

(a) $4900 \times 60 \times 60 \times 24=4.2(3) \times 10^{8} \mathrm{~J} \quad$ B
(b) (i) $55000 \times 1.2 \times 1100=7.26 \times 10^{7} \mathrm{~kg}$

B1
(ii) $\quad \Delta P_{E}=m g h=7.26 \times 10^{7} \times 9.8 \times 0.6$

B1
$=4.3[4.27] \times 10^{8} \mathrm{~J} \quad$ [ecf from $\left.h=1.2 \mathrm{~m}\right]$
(iii) $4.27 \times 10^{8} \times 2 / 4=2.1[2.13] \times 10^{8} \mathrm{~J} \quad$ [i.e. uses two tides per day] ecf their value for (bii)/2
(c) (i) Sensible mention of internal resistance of panel B1 open-circuit \equiv no load/no current drawn/emf measured as terminal p.d. B1 terminal p.d. $=\mathrm{emf}-$ energy required to draw current through panel/lost volts B1
(ii) assume 10 h of energy production per day [allow $4-20 \mathrm{~h}$]
(iii) $2.1 \times 10^{8} /(10 \times 60 \times 60) \times 1000[=5.83 \mathrm{~kW}]$

C1
so $5.83 / 0.25=23.3 \mathrm{~m}^{2}$ of panel required [allow range $58-12 \mathrm{~m}^{2}$]
(d) advantage of solar B1
disadvantage of solar \quad B1
advantage of wind B1
disadvantage of wind B1
the use of Physics terms is accurate; the answer is fluent/well argued with few errors in spelling, punctuation and grammar.
(must gain at least 3 for Physics)
the use of Physics terms is accurate but the answer lacks coherence or the spelling, punctuation and grammar are poor
(must gain at least 1 for Physics)
the use of Physics terms is inaccurate; the answer is disjointed with
significant errors in spelling, punctuation and grammar
0
Tabulation can only score 1 in spg
\max
1

3

