Physics A

PHYA5C

Unit 5C Applied Physics

Data and Formulae Booklet

DATA
FUNDAMENTAL CONSTANTS AND VALUES

Quantity	Symbol
speed of light in vacuo	c
permeability of free space	μ_{0}
permittivity of free space	ε_{0}
charge of electron	e
the Planck constant	h
gravitational constant	G
the Avogadro constant	$N_{\text {A }}$
molar gas constant	R
the Boltzmann constant	k
the Stefan constant	σ
the Wien constant	α
electron rest mass (equivalent to $5.5 \times 10^{-4} \mathrm{u}$)	$m_{\text {e }}$
electron charge/mass ratio	e / m_{e}
proton rest mass (equivalent to 1.00728 u)	$m_{\text {p }}$
proton charge/mass ratio	e / m_{p}
neutron rest mass (equivalent to 1.00867 u)	m_{n}
gravitational field strength	g
acceleration due to gravity	g
atomic mass unit (1 u is equivalent to 931.3 MeV)	u

ASTRONOMICAL DATA

Body	Mass/kg	Mean radius $/ m$
Sun	1.99×10^{30}	6.96×10^{8}
Earth	5.98×10^{24}	6.37×10^{6}

Value	Units
3.00×10^{8}	$\mathrm{m} \mathrm{s}^{-1}$
$4 \pi \times 10^{-7}$	$\mathrm{H} \mathrm{m}^{-1}$
8.85×10^{-12}	F m ${ }^{-1}$
-1.60×10^{-19}	C
6.63×10^{-34}	J s
6.67×10^{-11}	N m ${ }^{2} \mathrm{~kg}^{-2}$
6.02×10^{23}	mol^{-1}
8.31	$\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
1.38×10^{-23}	J^{-1}
5.67×10^{-8}	W m ${ }^{-2} \mathrm{~K}^{-4}$
2.90×10^{-3}	m K
9.11×10^{-31}	kg
1.76×10^{11}	C kg ${ }^{-1}$
$1.67(3) \times 10^{-27}$	kg
9.58×10^{7}	C kg ${ }^{-1}$
$1.67(5) \times 10^{-27}$	kg
9.81	$\mathrm{N} \mathrm{kg}{ }^{-1}$
9.81	$\mathrm{m} \mathrm{s}^{-2}$
1.661×10^{-27}	kg

GEOMETRICAL EQUATIONS

arc length	$=r \theta$
circumference of circle	$=2 \pi r$
area of circle	$=\pi r^{2}$
surface area of cylinder	$=2 \pi r h$
volume of cylinder	$=\pi r^{2} h$
area of sphere	$=4 \pi r^{2}$
volume of sphere	$=\frac{4}{3} \pi r^{3}$

AS FORMULAE

PARTICLE PHYSICS

Rest energy values

class	name	symbol	rest energy $/ \mathrm{MeV}$
photon	photon	γ	0
lepton	neutrino	v_{e}	0
		v_{μ}	0
	electron	$e^{ \pm}$	0.510999
	muon	$\mu^{ \pm}$	105.659
mesons	π meson	$\pi^{ \pm}$	139.576
		π^{0}	134.972
	K meson	$\mathrm{K}^{ \pm}$	493.821
		$\mathrm{~K}^{0}$	497.762
baryons	proton	p	938.257
	neutron	n	939.551

Properties of quarks
antiquarks have opposite signs

type	charge	baryon number	strangeness
\mathbf{u}	$+\frac{2}{3} e$	$+\frac{1}{3}$	0
\mathbf{d}	$-\frac{1}{3} e$	$+\frac{1}{3}$	0
\mathbf{s}	$-\frac{1}{3} e$	$+\frac{1}{3}$	-1

Properties of Leptons

	lepton number
particles: $\mathrm{e}^{-}, v_{\mathrm{e}} ; \mu^{-}, v_{\mu}$	+1
antiparticles: $\mathrm{e}^{+}, \overline{v_{\mathrm{e}}} ; \mu^{+}, \overline{v_{\mu}}$	-1

Photons and Energy Levels

photon energy
photoelectricity
energy levels
de Broglie Wavelength
$E=h f=h c / \lambda$
$h f=\phi+E_{\mathrm{K}(\text { max })}$
$h f=E_{1}-E_{2}$
$\lambda=\frac{h}{p}=\frac{h}{m v}$

ELECTRICITY

current and

$$
I=\frac{\Delta Q}{\Delta t}
$$

$V=\frac{W}{Q}$
$R=\frac{V}{I}$
emf

$$
\varepsilon=\frac{E}{Q}
$$

$$
\varepsilon=I(R+r)
$$

resistors in series $\quad R=R_{1}+R_{2}+R_{3}+\ldots$
resistors in parallel $\quad \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots$
resistivity
$\rho=\frac{R A}{L}$
power

$$
P=V I=I^{2} R=\frac{V^{2}}{R}
$$

alternating current $\quad I_{\mathrm{rms}}=\frac{I_{0}}{\sqrt{2}} \quad V_{\mathrm{rms}}=\frac{V_{0}}{\sqrt{2}}$

MECHANICS

moments \quad moment $=F d$
velocity and
acceleration

$$
v=\frac{\Delta s}{\Delta t}
$$

$$
a=\frac{\Delta v}{\Delta t}
$$

equations of motion
$v=u+a t$
$s=\frac{(u+v)}{2} t$
$v^{2}=u^{2}+2 a s \quad s=u t+\frac{a t^{2}}{2}$
force
work, energy and power
$F=m a$
$W=F s \cos \theta$
$E_{\mathrm{K}}=1 / 2 m v^{2} \quad \Delta E_{P}=m g \Delta h$
$P=\frac{\Delta W}{\Delta t}, P=F v$
efficiency $=\frac{\text { useful output power }}{\text { input power }}$
MATERIALS
density

$$
\rho=\frac{m}{V}
$$

Hooke's law $\quad F=k \Delta L$
$\underset{\text { Yodulus }}{\text { Young }}=\frac{\text { tensile stress }}{\text { tensile strain }}$ tensile stress $=\frac{F}{A}$ tensile strain $=\frac{\Delta L}{L}$
energy
stored

$$
E=\frac{1}{2} F \Delta L
$$

WAVES

wave speed	$c=f \lambda$	period	$T=\frac{1}{f}$
fringe spacing	$w=\frac{\lambda D}{s}$	diffraction grating	$d \sin \theta=n \lambda$

refractive index of a substance $s, n=\frac{c}{c_{s}}$
for two different substances of refractive indices n_{1} and n_{2},
$\begin{array}{ll}\text { law of refraction } & n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \\ \text { critical angle } & \sin \theta_{\mathrm{c}}=\frac{n_{2}}{n_{1}} \text { for } n_{1}>n_{2}\end{array}$

A2 FORMULAE

MOMENTUM

force

$$
F=\frac{\Delta(m v)}{\Delta t}
$$

impulse

$$
\mathrm{F} \Delta t=\Delta(m v)
$$

CIRCULAR MOTION

angular velocity
$\omega=\frac{v}{r}$
$\omega=2 \pi f$
centripetal acceleration
$a=\frac{v^{2}}{r}=\omega^{2} r$
centripetal force
$F=\frac{m v^{2}}{r}=m \omega^{2} r$

OSCILLATIONS

acceleration
$a=-(2 \pi f)^{2} x$
displacement
speed
$x=A \cos (2 \pi f t)$
$v= \pm 2 \pi f \sqrt{A^{2}-x^{2}}$
maximum speed $\quad v_{\max }=2 \pi f A$
maximum acceleration
$a_{\text {max }}=(2 \pi f)^{2} A$
for a mass-spring system
$T=2 \pi \sqrt{\frac{m}{k}}$
for a simple pendulum $\quad T=2 \pi \sqrt{\frac{l}{g}}$

GRAVITATIONAL FIELDS

force between two masses
$F=\frac{G m_{1} m_{2}}{r^{2}}$
gravitational field
strength
magnitude of
gravitational field strength in a radial field gravitational potential
$g=\frac{F}{m}$
$g=\frac{G M}{r^{2}}$
$\Delta W=m \Delta V$
$V=-\frac{G M}{r}$
$g=-\frac{\Delta V}{\Delta r}$

ELECTRIC FIELDS AND CAPACITORS

force between two point charges
force on a charge

$$
F=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} Q_{2}}{r^{2}}
$$

field strength for a uniform field
field strength for a radial field

$$
F=E Q
$$

$$
E=\frac{V}{d}
$$

$$
E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}
$$

electric potential

$$
\Delta W=Q \Delta V
$$

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r}
$$

capacitance
decay of charge

$$
C=\frac{Q}{V}
$$

$$
Q=Q_{0} \mathrm{e}^{-t / R C}
$$

time constant
RC
capacitor energy stored

$$
\mathrm{E}=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}
$$

MAGNETIC FIELDS

force on a current	$F=B I l$
force on a moving charge	$F=B Q v$
magnetic flux	$\Phi=B A$
magnetic flux linkage	$N \Phi=B A N$
magnitude of induced emf	$\varepsilon=N \frac{\Delta \Phi}{\Delta t}$
emf induced in a rotating coil	$N \Phi=B A N \cos \theta$ $\varepsilon=B A N \omega \sin \omega t$ transformer equations
$\frac{N_{s}}{N_{p}}=\frac{V_{s}}{V_{p}}$	
	efficiency $=\frac{I_{s} V_{s}}{I_{p} V_{p}}$

RADIOACTIVITY AND NUCLEAR PHYSICS

the inverse square law for γ radiation	$\gamma \quad I=\frac{k}{x^{2}}$
radioactive decay	$\underline{\Delta N}=-\lambda N, N=N_{o} \mathrm{e}^{-\lambda t}$
	Δt
activity	$A=\lambda N$
half-life	$T_{1 / 2}=\frac{\ln 2}{\lambda}$
nuclear radius	$R=r_{0} A^{1 / 3}$
energy-mass equation	$E=m c^{2}$

GASES AND THERMAL PHYSICS

gas law

$$
p V=n R T
$$

$$
p V=N k T
$$

kinetic theory model

$$
p V=\frac{1}{3} N m\left(c_{\mathrm{rms}}\right)^{2}
$$

kinetic energy of gas molecule
$\frac{1}{2} m\left(c_{\mathrm{rms}}\right)^{2}=\frac{3}{2} k T=\frac{3 R T}{2 \mathrm{~N}_{\mathrm{A}}}$
energy to change
temperature
$Q=m c \Delta T$
energy to change state
$Q=m l$

OPTIONS FORMULAE

ASTROPHYSICS

1 astronomical unit $=1.50 \times 10^{11} \mathrm{~m}$
1 light year $=9.46 \times 10^{15} \mathrm{~m}$
1 parsec $=206265 \mathrm{AU}=3.08 \times 10^{16} \mathrm{~m}=3.261 \mathrm{yr}$
Hubble constant, $H=65 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$
lens equation $\quad \frac{1}{f}=\frac{1}{u}+\frac{1}{v}$
$M=\frac{\text { angle subtended by image at eye }}{\text { angle subtended by object at unaided eye }}$
in normal adjustment $\quad M=\frac{f_{0}}{f_{e}}$
resolving power

$$
\theta \approx \frac{\lambda}{D}
$$

magnitude equation

$$
m-M=5 \log \frac{d}{10}
$$

Wien's law

$$
\lambda_{\max } T=0.0029 \mathrm{~m} \mathrm{~K}
$$

Hubble law
Stefan's law

$$
v=H d
$$

$$
P=\sigma A T^{4}
$$

Doppler shift for $v \ll c \quad z=\frac{\Delta f}{f}=-\frac{\Delta \lambda}{\lambda}=\frac{v}{c}$
Schwarzschild radius $\quad R_{\mathrm{s}}=\frac{2 G M}{c^{2}}$

MEDICAL PHYSICS

lens equations
$P=\frac{1}{f}$
$m=\frac{v}{u}$
$\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$
intensity level
intensity level $=10 \log \frac{I}{I_{0}}$
absorption

$$
\begin{aligned}
& I=I_{0} \mathrm{e}^{-\mu x} \\
& \mu_{m}=\frac{\mu}{\rho}
\end{aligned}
$$

APPLIED PHYSICS

$\begin{array}{ll}\text { moment of inertia } & I=\Sigma m r^{2} \\ \text { angular kinetic energy } & E_{\mathrm{k}}=\frac{1}{2} I \omega^{2}\end{array}$
equations of angular motion

$$
\begin{aligned}
& \omega_{2}=\omega_{1}+\alpha t \\
& \omega_{2}^{2}=\omega_{1}^{2}+2 \alpha \theta \\
& \theta=\omega_{1} t+\frac{1}{2} \alpha t^{2} \\
& \theta=1 / 2\left(\omega_{1}+\omega_{2}\right) t
\end{aligned}
$$

torque
angular momentum
work done
power
thermodynamics
adiabatic change
isothermal change

$$
T=I \alpha
$$

angular momentum $=I \omega$
$W=T \theta$
$P=T \omega$
$Q=\Delta U+W$
$W=p \Delta V$
$p V^{\prime}=$ constant
$p V=$ constant
heat engines
efficiency $=\frac{W}{Q_{\text {in }}}=\frac{Q_{\text {in }}-Q_{\text {out }}}{Q_{\text {in }}}$
maximum efficiency $=\quad \frac{T_{H}-T_{C}}{T_{H}}$
work done per cycle = area of loop
input power $=$ calorific value \times fuel flow rate
indicated power $=\quad($ area of $\mathrm{p}-\mathrm{V}$ loop $) \times($ no of cycles per second) \times number of cylinders
output of brake power $P=T \omega$
friction power $=$ indicated power - brake power
heat pumps and refrigerators
refrigerator: $C O P_{\text {ref }}=\frac{Q_{\text {out }}}{W}=\frac{Q_{\text {out }}}{Q_{\text {in }}-Q_{\text {out }}}$
heat pump: $C O P_{\mathrm{hp}}=\frac{Q_{\text {in }}}{W}=\frac{Q_{\text {in }}}{Q_{\text {in }}-Q_{\text {out }}}$

TURNING POINTS IN PHYSICS

$$
\begin{aligned}
& \qquad \begin{array}{l}
F=\frac{e V}{d} \\
\text { electrons in fields } \\
F=B e v \\
r
\end{array}=\frac{m v}{B e} \\
& 1 / 2 m v^{2}=e V \\
& \frac{Q V}{d}=m g \\
& F=6 \pi \eta r v \\
& \text { wave particle duality } \begin{aligned}
& c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}} \\
& \lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m e V}} \\
& \text { special } \\
& \text { relativity } \\
& E=m c^{2}=\frac{m_{0} c^{2}}{\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}} \\
& l=l_{0}\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}} \quad t=t_{0}\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}}
\end{aligned}
\end{aligned}
$$

