

General Certificate of Education Advanced Level Examination June 2010

Physics A

PHYA5C

Unit 5C Applied Physics

Data and Formulae Booklet

DATA

FUNDAMENTAL CONSTANTS AND VALUES

Quantity	Symbol	Value	Units
speed of light in vacuo	С	3.00×10^{8}	${ m m~s}^{-1}$
permeability of free space	$\mu_{ m o}$	$4\pi \times 10^{-7}$	${\rm H}~{\rm m}^{-1}$
permittivity of free space	\mathcal{E}_{o}	8.85×10^{-12}	$F m^{-1}$
charge of electron	е	-1.60×10^{-19}	С
the Planck constant	h	6.63×10^{-34}	Js
gravitational constant	G	$6.67 imes 10^{-11}$	$N m^2 kg^{-2}$
the Avogadro constant	$N_{ m A}$	6.02×10^{23}	mol^{-1}
molar gas constant	R	8.31	$J K^{-1} mol^{-1}$
the Boltzmann constant	k	1.38×10^{-23}	$\mathbf{J} \ \mathbf{K}^{-1}$
the Stefan constant	σ	5.67×10^{-8}	$W m^{-2} K^{-4}$
the Wien constant	α	2.90×10^{-3}	m K
electron rest mass (equivalent to 5.5×10^{-4} u)	m _e	9.11×10^{-31}	kg
electron charge/mass ratio	$e/m_{\rm e}$	1.76×10^{11}	$C \ kg^{-1}$
proton rest mass (equivalent to 1.00728 u)	$m_{ m p}$	$1.67(3) \times 10^{-27}$	kg
proton charge/mass ratio	$e/m_{\rm p}$	9.58×10^{7}	$C \ kg^{-1}$
neutron rest mass (equivalent to 1.00867 u)	m _n	$1.67(5) \times 10^{-27}$	kg
gravitational field strength	g	9.81	N kg^{-1}
acceleration due to gravity	g	9.81	${\rm m~s}^{-2}$
atomic mass unit (1u is equivalent to 931.3 MeV)	u	1.661×10^{-27}	kg

GEOMETRICAL EQUATIONS

arc length	$= r\theta$
circumference of circle	$=2\pi r$
area of circle	$=\pi r^2$
surface area of cylinder	$=2\pi rh$
volume of cylinder	$=\pi r^2 h$
area of sphere	$=4\pi r^2$
volume of sphere	$=\frac{4}{3}\pi r^3$

ASTRONOMICAL DATA

Body	Mass/kg	Mean radius/m
Sun	1.99×10^{30}	6.96×10^8
Earth	$5.98 imes 10^{24}$	6.37×10^{6}

AS FORMULAE

PARTICLE PHYSICS

Rest energy values

class	name	symbol	rest energy /MeV
photon	photon	γ	0
lepton	neutrino	ve	0
		v_{μ}	0
	electron	e^{\pm}	0.510999
	muon	μ^{\pm}	105.659
mesons	π meson	π^{\pm}	139.576
		π^0	134.972
	K meson	K^{\pm}	493.821
		K ⁰	497.762
baryons	proton	р	938.257
	neutron	n	939.551

Properties of quarks

antiquarks have opposite signs

type	charge	baryon number	strangeness
u	$+\frac{2}{3}e$	$+\frac{1}{3}$	0
d	$-\frac{1}{3}e$	$+\frac{1}{3}$	0
S	$-\frac{1}{3}e$	$+\frac{1}{3}$	-1

Properties of Leptons

	lepton number
<i>particles</i> : e^{-} , v_e ; μ^{-} , v_{μ}	+1
<i>antiparticles</i> : e^+ , $\overline{v_e}$; μ^+ , $\overline{v_{\mu}}$	-1

Photons and Energy Levels

photon energy	$E = hf = hc / \lambda$
photoelectricity	$hf = \phi + E_{K(max)}$
energy levels	$hf = E_1 - E_2$
de Broglie Wavelength	$\lambda = \frac{h}{p} = \frac{h}{mv}$

ELECTRICITY

current and $I = \frac{\Delta}{\Delta}$	$\frac{Q}{\Delta t}$ $V = \frac{W}{Q}$	$R = \frac{V}{I}$
emf ε=	$=\frac{E}{Q}$	$\varepsilon = I(R+r)$
resistors in series	$R = R_1 + R_2 + R_3$	+
resistors in parallel	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2}$	$\frac{1}{R_3} + \dots$
resistivity	$\rho = \frac{RA}{L}$	
power	$P = VI = I^2 R =$	$\frac{V^2}{R}$
alternating current	$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$	$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$
MECHANICS		
moments	moment = Fd	
velocity and	Δs	Δv
acceleration	$v = \frac{1}{\Delta t}$	$a = \frac{1}{\Delta t}$
equations of motion	v = u + at	$s = \frac{(u+v)}{2}t$
	$v^2 = u^2 + 2as$	$s = ut + \frac{at^2}{2}$
force	F = ma	
work, energy and power	$W = Fs \cos \theta$ $E_{\rm K} = \frac{1}{2} m v^2$	$\Delta E_P = mg\Delta h$
	$P = \frac{\Delta W}{\Delta t}, P = H$	⁷ v
useful out	put power	
efficiency =	power	
MATERIALS	-	
density $\rho = \frac{m}{V}$	Hooke's	law $F = k \Delta L$
Young tensile s	tress tensile st	$ress = \frac{F}{L}$
$modulus = \frac{1}{tonsiles}$	tunin	A

$$\frac{Young}{modulus} = \frac{\text{tensile stress}}{\text{tensile strain}}$$

energy
$$E = \frac{1}{2}F\Delta L$$

stored

WAVES

wave speed
$$c = f \lambda$$
 period $T = \frac{1}{f}$
fringe
spacing $w = \frac{\lambda D}{s}$ diffraction $d \sin \theta = n\lambda$

tensile strain = $\frac{\Delta L}{L}$

refractive index of a substance s, $n = \frac{c}{c_s}$

for two different substances of refractive indices n_1 and n_2 , *law of refraction* $n_1 \sin \theta_1 = n_2 \sin \theta_2$ $\sin \theta_{\rm c} = \frac{n_2}{n_1} \text{ for } n_1 > n_2$ critical angle

3

A2 FORMULAE

MOMENTUM

force

impulse

CIRCULAR MOTION

angular velocity

centripetal acceleration

 $\omega = \frac{v}{r}$ $\omega = 2\pi f$ $a = \frac{v^2}{r} = \omega^2 r$ $F = \frac{mv^2}{r} = m\omega^2 r$

 $F = \frac{\Delta(mv)}{\Delta t}$

 $\mathbf{F} \Delta t = \Delta(mv)$

OSCILLATIONS

centripetal force

acceleration	$a = -(2\pi f)^2 x$
displacement	$x = A \cos\left(2\pi f t\right)$
speed	$v = \pm 2\pi f \sqrt{A^2 - x^2}$
maximum speed maximum acceleration	$v_{\max} = 2\pi f A$ $a_{\max} = (2\pi f)^2 A$
for a mass-spring system	$T = 2\pi \sqrt{\frac{m}{k}}$
for a simple pendulum	$T = 2\pi \sqrt{\frac{l}{g}}$

GRAVITATIONAL FIELDS

force between two masses	$F = \frac{G m_1 m_2}{r^2}$
gravitational field strength	$g = \frac{F}{m}$
magnitude of gravitational field strength in a radial field	$g = \frac{GM}{r^2}$
gravitational potential	$\Delta W = m \Delta V$
	$V = -\frac{GM}{r}$
	$g = -\frac{\Delta V}{\Delta r}$

ELECTRIC FIELDS AND CAPACITORS

force between two point charges	$F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r^2}$
force on a charge	F = EQ
field strength for a uniform field	$E = \frac{V}{d}$
field strength for a radial field	$E = \frac{Q}{4\pi\varepsilon_0 r^2}$

electric potential	$\Delta W = Q \Delta V$
	$V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$
capacitance	$C = \frac{Q}{V}$
decay of charge	$Q = Q_0 \mathrm{e}^{-t/RC}$
time constant	RC

capacitor energy stored

$$=\frac{1}{2}CV^2 \qquad =\frac{1}{2}\frac{Q^2}{C}$$

D11

MAGNETIC FIELDS

force on a current	F = BII
force on a moving charge	F = BQv
magnetic flux	$\Phi = BA$
magnetic flux linkage	$N\Phi = BAN$
magnitude of induced emf	$\varepsilon = N \; \frac{\Delta \boldsymbol{\Phi}}{\Delta t}$
emf induced in a rotating coil	$N\Phi = BAN\cos\theta$ $\varepsilon = BAN\omega\sin\omega t$
transformer equations	$\frac{N_s}{N_p} = \frac{V_s}{V_p}$

 $\mathbf{E} = \frac{1}{2} QV$

efficiency = $\frac{I_s V_s}{I_p V_p}$

pV = NkT

RADIOACTIVITY AND NUCLEAR PHYSICS

the inverse square law fo radiation	rγ	$I = \frac{k}{x^2}$
radioactive decay	$\frac{\Delta N}{\Delta t} = -\lambda N,$	$N = N_o \mathrm{e}^{-\lambda t}$
activity		$A = \lambda N$
half-life		$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$
nuclear radius		$R = r_0 A^{1/3}$
energy-mass equation		$E = m c^2$
GASES AND THERMAL PHYSICS		
gas law		pV = nRT

kinetic theory model	$pV = \frac{1}{3}Nm\left(c_{\rm rms}\right)^2$
kinetic energy of gas molecule	$\frac{1}{2}m(c_{\rm rms})^2 = \frac{3}{2}kT = \frac{3RT}{2N_{\rm A}}$
energy to change temperature	$Q = mc\Delta T$
energy to change state	Q = m l

OPTIONS FORMULAE

ASTROPHYSICS	
<i>1</i> astronomical unit = 1.3	$50 \times 10^{11} \mathrm{m}$
1 light year = 9.46×10^{1}	⁵ m
<i>1 parsec</i> = 206265 AU =	$= 3.08 \times 10^{16} \text{ m} = 3.261 \text{ yr}$
<i>Hubble constant</i> , $H = 65$	$\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$
long aquation	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1}$
iens equation	f u v
angle subtend	ed by image at eve
$M = \frac{g}{\text{angle subtended b}}$	v object at unaided eve
	f
in normal adjustment	$M = \frac{J_0}{c}$
U U	f_e
nagalijina nomen	$\theta \approx \frac{\lambda}{\lambda}$
resolving power	D
_	d d
magnitude equation	$m - M = 5 \log \frac{10}{10}$
Wien's law	$\lambda_{\rm max} T = 0.0029 \text{ m K}$
Hubble law	v = H d
Stefan's law	$P = \sigma A T^4$
Danalan alifefanan eesa	$\int \Delta f \Delta \lambda v$
Doppier sniji jor v << c	$2 - \frac{1}{f} - \frac{1}{\lambda} - \frac{1}{c}$
	2GM
Schwarzschild radius	$R_{\rm s} = \frac{20M}{a^2}$
MEDICAL DUVSICS	L
WIEDICAL PHYSICS	1
lens equations	$P = \frac{1}{c}$
1	f
	$m = \frac{V}{V}$
	u
	1_1_1
	$\frac{1}{f} - \frac{1}{u} + \frac{1}{v}$
	I
intensity level	intensity level = $10 \log \frac{1}{L_{\odot}}$
	10
absorption	$I = I_0 e^{-\mu x}$
	$\mu_m = \frac{\mu}{2}$
	ρ
APPLIED PHYSICS	
moment of inertia	$I = \sum mr^2$
momeni oj inerita	$1 - \Delta m$
angular kinetic energy	$E_{\rm k} = \frac{1}{2} I \omega^2$
	2
equations of angular	
motion	$\omega_2 = \omega_1 + \alpha t$
	$\omega^2 = \omega^2 + 2\omega^0$
	$\omega_2 = \omega_1 + 2\alpha \sigma$
	$0 - 0.4 + \frac{1}{2}$
	$\sigma = \omega_1 \iota + \frac{-\alpha}{2} \iota$
	$\theta = \frac{1}{2} \left(\omega_1 + \omega_2 \right) t$

torque	$T = I \alpha$		
angular momentum	angular momentum = $I\omega$		
work done	$W = T\theta$		
power	$P = T\omega$		
thermodynamics	$Q = \Delta U + W$		
	$W = p \Delta V$		
adiabatic change	pV' = constant		
isothermal change	pV = constant		
heat engines			
efficiency = $\frac{W}{Q_{in}}$	$=\frac{Q_{in}-Q_{out}}{Q_{in}}$		
maximum efficiency	$= \frac{T_H - T_C}{T_H}$		
work done per cycle	<i>work done per cycle</i> = area of loop		
<i>input power</i> = calori	<i>input power</i> = calorific value × fuel flow rate		
indicated power =	(area of p-V loop) \times (no of cycles per second) \times number of cylinders		
output of brake power $P = T \omega$			
<i>friction power</i> = indicated power – brake power			
heat pumps and refrigerators			
refrigerator: COP _{ref}	$=\frac{Q_{out}}{W}=\frac{Q_{out}}{Q_{in}-Q_{out}}$		
<i>heat pump: COP</i> _{hp} =	$=\frac{Q_{in}}{W}=\frac{Q_{in}}{Q_{in}-Q_{out}}$		
TURNING POINT	TURNING POINTS IN PHYSICS		

electrons in fields	$F = \frac{eV}{d}$
	F = Bev
	$r = \frac{mv}{Be}$
	$\frac{1}{2}mv^2 = eV$
	$\frac{QV}{d} = mg$
	$F = 6\pi \eta r v$

wave particle duality $c = \frac{1}{\sqrt{\mu_0 \ \varepsilon_0}}$

special relativity

 $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2meV}}$ $E = mc^{2} = \frac{m_{0}c^{2}}{\left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}$ $l = l_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}} \qquad t = t_0 \left(1 - \frac{v^2}{c^2} \right)^{-\frac{1}{2}}$