

General Certificate of Education

Physics

PHA3/B3/X Investigate and Practical Skills in AS Physics

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

GCE Physics, PHA3/B3/X, Investigative and Practical Skills in AS Physics

Section A, Task 1

Question 1			
(a)	accuracy:raw readings of d_{1}, d_{2} and h to 0.1 mm , values sensible \checkmark d_{1} and/or d_{2} from repeated readings \checkmark (accept readings to 0.01 mm for digital callipers)	$\mathbf{2}$	
(b)	accuracy:V, max 4 sf, in range $34.8 \mathrm{~cm}^{3}$ to $38.5 \mathrm{~cm}^{3}, 36 \mathrm{~cm}^{3}, 37 \mathrm{~cm}^{3}$ or $38 \mathrm{~cm}^{3} \checkmark \checkmark$ [in range $33.0 \mathrm{~cm}^{3}$ to $40.3 \mathrm{~cm}^{3}, 34 \mathrm{~cm}^{3}, 35 \mathrm{~cm}^{3}$ or $39 \mathrm{~cm}^{3} \checkmark$] *adjust ranges if type 23 stopper has been provided (penalise 5 or more sf in final answer)	$\mathbf{2}$	
(c)	explanation:either the jaws of the callipers may not lie in the same plane as the dimension being measured so the reading may not be correct \checkmark or it was difficult to prevent the jaws of the callipers from deforming the stopper and changing the reading to be measured \checkmark (reject ideas that only refer to some property of the stopper)	$\mathbf{1}$	

Question 2		
(a) (i) (ii) (iii) (iv)	$\begin{array}{\|ll} \hline \text { accuracy: } & \begin{array}{l} p \text { and } q \text { to nearest } \mathrm{mm} \checkmark \\ m \text { in } \mathrm{g} \text { to } \mathrm{SV} \pm 5 \mathrm{~g} \checkmark \\ \\ \text { (for missing SV values use } 48.5 \mathrm{~g} \text { to } 58.5 \mathrm{~g} \text {; (penalise } 5 \text { or more } \\ \text { sf in final answer)) } \end{array} \\ \text { explanation: } & \begin{array}{l} \text { measure (vertical) height to ruler from bench at each end [at } \\ \text { two or more points]; (adjust position of mass) to make sure } \\ \text { (vertical) heights are the same } \checkmark \end{array} \\ & \end{array}$	3
(b) (i) (ii) (iii)	accuracy/ $\quad r$ to nearest $\mathrm{mm}, r<q \checkmark$ deduction: $\quad \rho_{\mathrm{S}}$ in range 1300 to $1600 \mathrm{~kg} \mathrm{~m}^{-3} \checkmark$ explanation: r contains the greatest (percentage) uncertainty because this is the smallest dimension \checkmark	3
(c)	deduction: V from $\frac{m}{\rho}$ (accept eow) V, 3 sf or 4 sf , in range 33.9 to $39.4 \mathrm{~cm}^{3}$ [2 sf in range 35 to 39 $\left.\mathrm{cm}^{3}\right] \checkmark \checkmark$ [31.1 to $42.1 \mathrm{~cm}^{3}, 2 \mathrm{sf}$ in range 32 to 34 or 40 or $41 \mathrm{~cm}^{3} \checkmark$] (mixed units leading to power of ten error can earn 1 max; no ecf from false ρ_{S}) *adjust ranges if type 23 stopper has been provided (penalise 5 or more sf in final answer)	3
	Total	9

Section A, Task 2

Question 1		
(a) (i) (ii) (iii)	$\begin{array}{ll}\text { accuracy: } & d \text { recorded to nearest } \mathrm{mm}, 20.0 \leq d \leq 30.0 \mathrm{~cm}, \\ & L \text { recorded to nearest } \mathrm{mm}, 40.0 \leq L \leq 60.0 \mathrm{~cm} \checkmark \\ \text { estimation: } & \text { (absolute) uncertainty, } \Delta L, \text { in } \mathrm{mm}, \text { in range } 2 \mathrm{~mm} \text { to } 5 \mathrm{~mm} \checkmark\end{array}$	2
(b)	tabulation: $\quad m \quad / \mathrm{g} \quad d \quad / \mathrm{mm} \checkmark \checkmark$ deduct $1 / 2$ for each missing separator, rounding down; bald d and m is worth 1 mark penalise if m / g is not in the left-hand column of the table or if the tabulation is poor results: \quad5 additional sets of m and $d \checkmark$ m range $\geq 50 \mathrm{~g} \checkmark$ no credit for false data significant figures: all m to nearest g and all (tabulated) d to nearest $\mathrm{mm} \checkmark$ quality: \quadat least 5 points to $\pm 2 \mathrm{~mm}$ of straight line of positive gradient (judge from graph, providing this is suitably-scaled) \checkmark [allow ecf if appropriate curve has been drawn]	6
(c)	axes: d (vertical) against m (horizontal) or 0/2; each axis earns 1 mark providing valid unit and separator are given $\checkmark \checkmark$ [bald d (vertical) and m (horizontal) \checkmark] deduct a mark if the interval between the numerical values is marked on either axis with a frequency of $>5 \mathrm{~cm}$ scales: \quadpoints should cover at least half the grid horizontally \checkmark and half the grid vertically \checkmark (if necessary, a false origin should be used to meet these criteria; either or both marks may be lost for use of a difficult, backwards or non-linear scale) points: \quad6 points plotted correctly (check at least three including any anomalous points) $\checkmark \checkmark \checkmark$ 1 mark is deducted for every point missing and for every point > 1 mm from the correct position deduct 1 mark if any point is poorly marked; no credit for false data line:straight best fit line (ruled) of positive gradient \checkmark withhold the mark if the line is poorly marked (allow a smooth curve if accurately plotted points justify this; if false data used eg backwards graph, give credit if a reasonable line is drawn)	8
	Total	16

Section B

Question $\mathbf{1}$		
(a)	a valid attempt must be mad at the gradient calculation or 0/2, y-step and x-step both to be at least 8 semi-major grid squares \checkmark (if a poorly-scaled graph is drawn the hypotenuse of the gradient triangle should be extended to meet the 8×8 criteria) correct transfer of y-step and x-step data between graph and calculation \checkmark (mark is withheld if points used to determine either step $>1 \mathrm{~mm}$ from correct position on grid; if tabulated points are used these must lie on the line)	$\mathbf{2}$
(b)	$\frac{L}{G}$, in range 190 g to $210 \mathrm{~g}[0.20 \mathrm{~kg}] \checkmark \checkmark$ $[180 \mathrm{~g}$ to 220 g or 0.19 kg or $0.21 \mathrm{~kg} \checkmark]$ (penalise 5 or more sf in final answer)	$\mathbf{2}$
		Total

Question 2		
(a)	correct method using data from 1 (a) (ii) and 1 (a) (iii) Task 2, eg $\frac{\Delta L}{L} \times 100 \checkmark$	$\mathbf{1}$
(b)	correct method, ie $3 \times$ answer to 2 (a), correctly evaluated \checkmark	$\mathbf{1}$
		Total

Question 3		
	use a plumb line [metre ruler, checked with set square] to obtain the vertical from the rod \checkmark use a set square to obtain the horizontal from this vertical (hence establish the direction along which to measure) [allow ecf for 'vertical clamp stand'] \downarrow (credit relevant detail if shown in sketch)	$\mathbf{2}$
	Total	$\mathbf{2}$

Question 4		
	mass of water that just fills the bottle $=44.12-18.07(=26.05 \mathrm{~g}) \checkmark$ mass of liquid that just fills the bottle $=45.20-18.07(=27.13 \mathrm{~g}) \vee$ clarity of working, eg expect $\mathbf{2 6 . 0 5}(\mathrm{g})$ and $\mathbf{2 7 . 1 3 (\mathrm { g }) \text { and clear layout } \checkmark}$ density liquid $/ \mathrm{g} \mathrm{cm}^{-3}=27.13 \div 26.05 \checkmark$ [density liquid $/ \mathrm{kg} \mathrm{m}^{-3}=\left(27.13 \times 10^{3} \div 26.05 \times 10^{-5}\right)^{\vee}$] (withhold mark if 26.05 is truncated to 2 sf , but tolerate 3 sf) final answer in $\mathrm{kg} \mathrm{m}^{-3}$, evaluated to at least 4 sf, (expect 1041 or 1042, reject 1040; 5 or more sf are allowed here if rounding is correct) \checkmark [reverse argument using density to prove volume of water = volume of liquid can earn full credit, eg for $_{4} \checkmark=$ volume of water that fills bottle $\left(=\frac{26.05 \times 10^{-3}}{1000}\right)$ and volume of liquid that fills bottle $\left(=\frac{27.13 \times 10^{-3}}{1040}\right)$; for ${ }_{5} \checkmark$ both expressions $\left.=2.61 \times 10^{-5} \mathrm{~m}^{3}\right]$	5
	Total	5

Question 5		
(a)	the fifth row $\left[h_{\mathrm{L}}=37.7, h_{\mathrm{W}}=36.0\right]$ is suspect \checkmark this is the only set where $h_{\mathrm{L}}>h_{\mathrm{W}} \checkmark$	2
(b) (i) (b) (ii) (b) (iii)	${ }^{1} \mathrm{M}: \quad$ rejects errant set and calculates any $\frac{h_{W}}{h_{L}} \checkmark$ ${ }_{2} \mathrm{M}$: evaluates $\frac{h_{W}}{h_{L}}$ using all 5 valid data sets \checkmark ${ }_{3} \mathrm{M}: \quad$ calculates average $\frac{h_{W}}{h_{L}}$ using at least 2 valid sets (expect 1.046) ${ }_{4} \mathrm{M}$: density of liquid $=1000 \times \frac{h_{W}}{h_{L}} \checkmark$ ${ }_{1} \mathrm{M}$: rejects errant set and calculates average h_{W} and average $h_{\mathrm{L}} \checkmark$ ${ }_{2} \mathrm{M}$: as above using all 5 valid data sets (accept eow, eg $52.9(2) \mathrm{cm}$ and $50.6(2) \mathrm{cm}) \downarrow$ ${ }_{3} \mathrm{M}$: calculates $\frac{h_{W}}{h_{L}}$ using average values of h_{W} and h_{L} derived from at least 2 valid sets (expect 1.045) ${ }_{4} \mathrm{M}$: as first method ${ }_{12} \mathrm{M}$: rejecting errant set, calculates liquid density using any $1000 \times \frac{h_{W}}{h_{L}} \checkmark \checkmark$ ${ }_{3} \mathrm{M}$: calculates liquid density for each of the 5 valid data sets \checkmark ${ }_{4} \mathrm{M}$: calculates average of $1000 \times \frac{h_{W}}{h_{L}} \checkmark$ density of liquid $=1045 \mathrm{~kg} \mathrm{~m}^{-3}$ or $1046 \mathrm{~kg} \mathrm{~m}^{-3}\left[\right.$ accept $\left.3 \mathrm{sf} 1.050 \mathrm{~kg} \mathrm{~m}^{-3}\right] \checkmark$ (penalise 5 or more sf in final answer) plot a graph of $h_{\mathrm{w}}(\uparrow)$ against $h_{\llcorner }(\rightarrow)$; measure the gradient density of liquid $=$ gradient \times density of water \checkmark [plot $\rho_{\mathrm{w}} h_{\mathrm{w}}(\uparrow)$ against $h_{\mathrm{L}}(\rightarrow)$; measure gradient \checkmark density of liquid $=$ gradient \checkmark] errant data set is shown by point (significantly) off the best-fit line \checkmark (tolerate 'anomalous point would be an outlier')	8
(c)	parallax error when judging level of (bottom of) the meniscus against scale on ruler \checkmark valid procedure described to describe how h is read at eye level eg use of a mirror placed behind the tube or with a set-square [look along set square placed in contact with vertical face of ruler] \checkmark [the ruler may not be vertical \checkmark avoid by aligning with a plumb line or with a set-square with one edge on the bench or by comparing with a known vertical (eg a door frame) \checkmark may not measure to bottom of meniscus consistently \checkmark avoid by reading h with eye level with bottom of meniscus (procedure described as above) \checkmark] (credit relevant detail if shown in sketch) \checkmark] (reject 'leaky clip' as this will lead to changing levels)	2
	Total	12

