

General Certificate of Education

Physics 5451

Specification A

PHA3/P Practical Examination

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Question 1	AO3a: planning	
measurements:		
	(to measure the angle of incidence, α , of the aerofoil)	
	use a protractor [use a ruler to make suitable linear method if trig method given]; don't penalise for failure to mention balance/mass reading \checkmark	1
	strategy:	
	test or procedure to establish zero of α or ${}_{45}S=0$: switch on blower and adjust α until balance reading reverts to b_0 , the reading when the blower was off (or when the balance reads zero again if balance previously tared); [note that certain trig methods can be used to ascertain when $\alpha = 0$] \checkmark	
	(allow 'set zero of α in line with beam' or 'make aerofoil parallel bench'; don't accept 'read α when blower off')	E
	measure α and b [Δb if balance was tared] for different α or ₂₃₄₅ S=0 \checkmark	5
	(don't allow 'increase α until trend in b changes')	
	plot graph of b or (b_0 - b) [Δb if balance was tared against α] or ₃₄ S=0 \checkmark	
	find stall angle from turning point [accept evidence from sketch of graph] ✓	
	recognises that stall occurs when <i>b</i> minimum [accept evidence from graph] \checkmark (allow ₅ S even if ₃₄ S=0, providing ₁ S=1)	
	control:	
	position of blower (relative to aerofoil) [keep airflow horizontal or velocity of air constant] \checkmark	2
	(horizontal) position of prism (relative to pivot) \checkmark	2
	(ignore 'keep height of prism/position of counterweight constant' or vague statements such as 'don't move apparatus', 'keep airflow constant')	
	difficulties: (<i>difficulty</i> + <i>how overcome</i> = 2) any two of the following: reduce uncertainty in $\alpha \checkmark$	
	attach a long pointer to the shaft on which aerofoil is mounted and read off against (suitably enlarged) rotary scale [accept use of large diameter protractor] \checkmark and/or use 360° scale, read α from both sides and average (detect anomalies) \checkmark	
	and/or by establishing α by correct trigonometry; explanation must involve measurement of two linear distances \checkmark	
	reduce uncertainties in balance reading, $b \checkmark$	
	use long beam [large distance from aerofoil to prism] ✓ and/or	max 4
	use short distance between prism and pivot \checkmark and/or	
	use aerofoil of long span [high airflow rate] to increase lift force ✓ and/or	
	repeat experiment with negative values of α and average \checkmark and/or	
	check calibration of balance using known masses \checkmark and/or	
	shield the balance from stream of moving air (but no credit for 'cut out drafts'/'close windows' etc) \checkmark	
	reduce uncertainty in stalling angle \checkmark	
	by increasing frequency of readings [decreasing $\Delta \alpha$] around the turning point of the graph \checkmark	
	Total	max 8

Question 2			
(a)	AO3b implementing		
	initial observations:	I_0 recorded with unit, value sensible, e.g. in range 15 mA to 45 mA and greater than largest recorded <i>I</i> in (b);	1
		V_0 recorded with unit, value sensible, e.g. about 0.9 E \checkmark	
(b)	tabulation:	I/mA V/V ✓	
	results:	8 sets of I and $V \checkmark \checkmark$	
		deduct 1 mark for each missing deduct 1 mark if largest recorded $V < 0.85 V_0$	4
	significant figures:	applies (a) and (b): all <i>I</i> to 0.1 mA or better \checkmark applies (a) and (b): all <i>V</i> to 0.01 V \checkmark	
(C)	tabulation:	$(V_0 - V)/V$ I/mA \checkmark (don't insist on units here)	
	significant figures:	all $(V_0 - V)$ to 0.01 V, all <i>I</i> to 0.1 mA or better \checkmark (don't penalise SF errors in <i>I</i> in both (b) and (c))	
	quality:	7 of 8 points to $\pm 2 \text{ mm}$ of straight line \checkmark (providing suitably-scaled graph drawn)	
	AO3c applyin	g evidence and drawing conclusions	
	axes:	marked $(V_0 - V)/V$ and $I/mA \checkmark \checkmark$	8
		deduct ½ for each missing, rounding down	
	scales:	suitable (e.g. 8×8) $\checkmark \checkmark$	
		[5 × 5, 2 × 8, 8 × 2 ✓]	
	points:	8 points plotted correctly (check at least one) \checkmark	
		with straight best-fit line of positive gradient drawn	
(d)	<i>G</i> from suitable Δ (e.g. 8 × 8) \checkmark (for false plot of <i>V</i> against <i>I</i> , result must be negative)		
	in range 129 (Ω [125 (Ω) to 140	Ω) to 136 (Ω) [0.129 (kΩ) to 0.136 (kΩ)] ✓✓)(Ω) or 0.125 (kΩ) to 0.140 (kΩ) or 0.13 (kΩ) ✓]	3
	(for false plot o	of <i>V</i> against <i>I</i> , deduct 1 mark)	
(e) (i)	AO3d evaluating evidence and procedures		
	R_{T} from $\frac{E}{I_{0}}$ in	range 135Ω to 165Ω ✓	
	assumption that	at no current flows through R_{B} (during part (a)) \checkmark	
	[ammeter has	no zero resistance/no voltage drop across ammeter ✓]	max 3
(ii)	$R_B > R_T$ (simpl	e statement is adequate) ✓	
	since $V_0 > \frac{E}{2}$	\checkmark	
	(must include across R_B than	V_0 and E in explanation; reject bland 'because higher pd across R_T ')	
(f)	idea of maximi	sing range (of <i>I</i> and/or <i>V</i> readings) \checkmark	
	[found minimu	m current (and then intermediate readings)]	1
	(accept idea th	hat Δ /chosen based on $\frac{I_0}{n}$, where <i>n</i> is the number of sets)	
(g) (i)	zero error on a	nmmeter ✓ (reject idea of (constant) parallax error)	
(ii)	best fit lines do	bes not pass through the origin of the graph ✓	2
	(no credit for s	imply explaining how graph would look if $I \propto (V_0 - V)$)	
		Total	22