General Certificate of Education June 2006 Advanced Level Examination

PHYSICS (SPECIFICATION A) Unit 4 Waves, Fields and Nuclear Energy

ASSESSMENT and QUALIFICATIONS ALLIANCE

PA04

Section A

Thursday 15 June 2006 9.00 am to 10.30 am

For this paper you must have:

- an objective test answer sheet
- a black ball-point pen
- a calculator
- a question paper/answer book for Section B (enclosed)

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Instructions

- Use a black ball-point pen. Do not use pencil.
- Answer **all** questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book **not** on the answer sheet.

Information

- The maximum mark for this section is 30.
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- The question paper/answer book for Section B is enclosed within this question paper.

Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

					3	
Fundamental constants and values					Mechanics and Applied	Fields, Waves, Quantum
Quantity Symbol Value Units		Physics	Phenomena			
speed of ligh		c	3.00×10^{8}	$m s^{-1}$	v = u + at	- F
	of free space	μ_0	$4\pi \times 10^{-7}$	$H m^{-1}$	$s = \left(\frac{u+v}{2}\right)t$	$g = \frac{F}{m}$
	of free space	ε_0	$8.85 \times 10^{-12} \\ 1.60 \times 10^{-19}$	F m ⁻¹ C		G = GM
charge of ele the Planck c		e h	1.60×10 6.63×10^{-34}	Le	at^2	$g = -\frac{GM}{r^2}$
gravitational constant		G	6.67×10^{-11}	$N m^2 kg^{-2}$	$s = ut + \frac{at^2}{2}$	412
the Avogadro constant		N _A	6.02×10^{23}	mol ⁻¹	2 2 -	$g = -\frac{\Delta V}{\Delta x}$
molar gas constant		R	8.31	J K ⁻¹ mol ⁻¹	$v^2 = u^2 + 2as$	
the Boltzmann constant		k	1.38×10^{-23}		$F = \frac{\Delta(m\nu)}{\Delta t}$	$V = -\frac{GM}{r}$
the Stefan constant		σ α	5.67×10^{-8}		$F = \frac{1}{\Delta t}$,
	the Wien constant		2.90×10^{-3}	m K	P = Fv	$a = -(2\pi f)^2 x$
electron rest	to 5.5×10^{-4} u)	$m_{\rm e}$	9.11×10^{-31}	kg		$v = \pm 2\pi f \sqrt{A^2 - x^2}$
	rge/mass ratio	e/m _e	1.76×10^{11}	C kg ⁻¹	$efficiency = \frac{power \ output}{power \ input}$	
proton rest r		$m_{\rm p} = 1.70 \times 10^{-27}$		kg	power input	$x = A \cos 2\pi f t$
(equivalent t		P		_	$w = \frac{v}{2\pi}$	$T = 2\pi \sqrt{\frac{m}{k}}$
proton charg	ge/mass ratio	e/m _p	9.58×10^{7}	C kg ⁻¹	$\omega = \frac{\nu}{r} = 2\pi f$	
neutron rest		$m_{\rm n}$	1.67×10^{-27}	kg	2	$T = 2\pi \sqrt{\frac{l}{g}}$
(equivalent t			0.01	NT1 -1	$a = \frac{v^2}{r} = r\omega^2$	¥ 8
	field strength due to gravity		9.81 9.81	N kg ⁻¹ m s ⁻²		$\lambda = \frac{\omega s}{D}$
atomic mass		8 u	1.661×10^{-2}	⁷ kg	$I = \sum mr^2$	D
(1u is equiva		"	11001 / 10	1.6		$d\sin\theta = n\lambda$
931.3 MeV)					$E_{\rm k} = \frac{1}{2} I \omega^2$	$\theta \approx \frac{\lambda}{D}$
						D
Fundament	tal particles				$\omega_2 = \omega_1 + \alpha t$	$_{1}n_{2} = \frac{\sin \theta_{1}}{\sin \theta_{2}} = \frac{c_{1}}{c_{2}}$
Class	- Name	Curr	whol E	act an anon	$0 \qquad 1 \qquad 1 \qquad 2$	$\sin \theta_2 c_2$
Class	name	Syn		est energy	$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$	$_{1}n_{2} = \frac{n_{2}}{n_{1}}$
				MeV	$\omega_2^2 = \omega_1^2 + 2\alpha\theta$	$n_1 n_2 n_1$
photon	photon	γ	0			$\sin \theta_{\rm c} = \frac{1}{n}$
lepton	neutrino	ν_{c}	0		$\theta = \frac{1}{2} \left(\omega_1 + \omega_2 \right) t$	~ n
		v_{μ}	0			E = hf
	electron	e^{\pm}	0	510999	$T = I\alpha$	$hf = \phi + E_{\mathbf{k}}$
	muon	μ^{\pm}	1	05.659	angular momentum = $I\omega$	$hf = E_1 - E_2$
mesons	pion	π^{\star}	1:	39.576	$W = T\theta$	$\lambda = \frac{h}{p} = \frac{h}{mv}$
		π^0	1	34.972	$P = T\omega$	
	kaon	\mathbf{K}^{\pm}	4	93.821		$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$
		K^0	4	97.762	angular impulse = change of	$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$
baryons	proton	р	9	38.257	angular momentum = Tt	
-	neutron	n	9	39.551	$\Delta Q = \Delta U + \Delta W$ $\Delta W = p \Delta V$	Electricity
					$pV^{\gamma} = constant$	E
Properties of quarks					$\epsilon = \frac{E}{O}$	
-	-	n	0		work done per cycle = area	~
Туре	Charge			trangeness	of loop	$\epsilon = I(R+r)$
		nun	nber			$\frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \cdots$
u	$+\frac{2}{3}$	+	$\frac{1}{3}$	0	input power = calorific	R_{T} R_{1} R_{2} R_{3}
d	$-\frac{1}{3}$	-1-	$\frac{1}{3}$	0	value × fuel flow rate	$R_{\rm T}=R_1+R_2+R_3+\cdots$
a	5		-		indicated power as (area of $p - V$	$P = I^2 R$
S	$-\frac{1}{3}$	-+-	$\frac{1}{3}$	-1	$loop) \times (no. of cycles/s) \times$	
					(no. of cylinders)	$E = \frac{F}{Q} = \frac{V}{d}$
Geometrica	al equations					$\begin{bmatrix} - & Q & d \end{bmatrix}$
	0				friction power = indicated	
arc length =					power – brake power	$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$
circumferenc	the of circle = 2π	r			·	
area of circle = πr^2					$efficiency = \frac{W}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}}$	$E = \frac{1}{2} QV$
area of cylinder = $2\pi rh$					\mathcal{Q}_{in} \mathcal{Q}_{in}	F = BIl
volume of cylinder = $\pi r^2 h$					maximum possible	F = BQv
					-	$Q = Q_0 e^{-t/RC}$
area of spher					$efficiency = \frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$	
volume of sp	where $=\frac{4}{3}\pi r^{3}$				± H	$\Phi = BA$
					1	5

M/Jun06/PA04

4

magnitude of induced e.m.f. = $N \frac{\Delta \Phi}{\Delta t}$

$$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$
$$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$$

Mechanical and Thermal Properties

the Young modulus = $\frac{\text{tensile stress}}{\text{tensile strain}} = \frac{F}{A} \frac{l}{e}$ energy stored = $\frac{1}{2}$ Fe

 $\Delta Q = mc \ \Delta \theta$ $\Delta Q = ml$ $pV = \frac{1}{3} Nmc^{2}$ $\frac{1}{2} mc^{2} = \frac{3}{2} kT = \frac{3RT}{2N_{A}}$

Nuclear Physics and Turning Points in Physics

 $force = \frac{eV_{p}}{d}$ force = Bev $radius of curvature = \frac{mv}{Be}$ $\frac{eV}{d} = mg$ $work \ done = eV$ $F = 6\pi\eta rv$ $I = k \frac{I_{0}}{x^{2}}$ $\frac{\Delta N}{\Delta t} = -\lambda N$ $\lambda = \frac{h}{\sqrt{2meV}}$ $N = N_{0}e^{-\lambda t}$ $T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$ $R = r_{0} A^{\frac{1}{3}}$

$$E = mc^{2} = \frac{m_{0}c^{2}}{\left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}$$
$$l = l_{0} \left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}$$
$$t = \frac{t_{0}}{\left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}$$

Astrophysics and Medical Physics

Body	Mass/kg	<i>Mean radius/</i> m
Sun Earth	2.00×10^{30} 6.00×10^{24}	$\begin{array}{c} 7.00\times10^8\\ 6.40\times10^6\end{array}$

1 astronomical unit = 1.50×10^{11} m 1 parsec = 206265 AU = 3.08×10^{16} m =

3.26 ly

1 light year = 9.45×10^{15} m

Hubble constant (H) = 65 km s⁻¹ Mpc⁻¹

angle subtended by image at eye M = -----

angle subtended by object at

unaided eye

$$M = \frac{f_0}{f_c}$$

$$m - M = 5 \log \frac{d}{10}$$

$$m_{max}T = \text{constant} = 0.0029 \text{ m K}$$

$$v = Hd$$

$$P = \sigma A T^4$$

$$\frac{\Delta f}{f} = \frac{v}{c}$$

$$\frac{\Delta \lambda}{\lambda} = -\frac{v}{c}$$

$$R_s \approx \frac{2GM}{c^2}$$

Medical Physics $power = \frac{1}{f}$ $\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \text{ and } m = \frac{v}{u}$ $intensity \ level = 10 \ log \ \frac{I}{I_0}$ $I = I_0 e^{-\mu x}$ $\mu_m = \frac{\mu}{\rho}$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

$$\frac{1}{C_{\rm T}} = \frac{1}{C_{\rm 1}} + \frac{1}{C_{\rm 2}} + \frac{1}{C_{\rm 3}} + \cdots$$

$$C_{\rm T} = C_{\rm 1} + C_{\rm 2} + C_{\rm 3} + \cdots$$

$$X_{\rm C} = \frac{1}{2\pi fC}$$

Alternating Currents

 $f = \frac{1}{T}$

Operational amplifier

 $G = \frac{V_{out}}{V_{in}} \quad \text{voltage gain}$ $G = -\frac{R_{f}}{R_{1}} \quad \text{inverting}$ $G = 1 + \frac{R_{f}}{R_{1}} \quad \text{non-inverting}$ $V_{out} = -R_{f} \left(\frac{V_{1}}{R_{1}} + \frac{V_{2}}{R_{2}} + \frac{V_{3}}{R_{3}}\right) \quad \text{summing}$

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case.

1 A mass M on a spring oscillates along a vertical line with the same period *T* as an object O in uniform circular motion in a vertical plane. When M is at its highest point, O is at its lowest point.

What is the least time interval between successive instants when the acceleration of M is exactly in the opposite direction to the acceleration of O?

- $\mathbf{A} \quad \frac{T}{4}$ $\mathbf{B} \quad \frac{T}{2}$ $\mathbf{C} \quad \frac{3T}{4}$
- **D** *T*
- 2 A particle of mass *m* oscillates with amplitude *A* at frequency *f*. What is the maximum kinetic energy of the particle?
 - $\mathbf{A} \qquad \frac{1}{2} \pi^2 m f^2 A^2$
 - **B** $\pi^2 m f^2 A^2$
 - $\mathbf{C} \qquad 2\,\pi^2\,mf^2A^2$
 - $\mathbf{D} \qquad 4\,\pi^2\,mf^2A^2$

- **3** The sound quality of a portable radio is improved by adjusting the orientation of the aerial. Which statement is a correct explanation of this improvement?
 - A The radio waves from the transmitter are polarised.
 - **B** The radio waves from the transmitter are unpolarised.
 - **C** The radio waves become polarised as a result of adjusting the aerial.
 - **D** The radio waves become unpolarised as a result of adjusting the aerial.
- 4 A microwave transmitter is used to direct microwaves of wavelength 30 mm along a line XY. A metal plate is positioned at right angles to XY with its mid-point on the line, as shown.

When a detector is moved gradually along XY, its reading alternates between maxima and minima. Which one of the following statements is **not** correct?

- A The distance between two minima could be 15 mm.
- **B** The distance between two maxima could be 30 mm.
- **C** The distance between a minimum and a maximum could be 30 mm.
- **D** The distance between a minimum and a maximum could be 37.5 mm.

In a double slit system used to produce interference fringes, the separation of the slits is s and the width of each slit is x. L is a source of monochromatic light. Which one of the following changes would **decrease** the separation of the fringes seen on the screen?

- A moving the screen closer to the double slits
- **B** decreasing the width, *x*, of each slit, but keeping *s* constant
- **C** decreasing the separation, *s*, of the slits
- **D** exchanging L for a monochromatic source of longer wavelength

The diagram above shows the first four diffraction orders each side of the zero order when a beam of monochromatic light is incident normally on a diffraction grating of slit separation *d*. All the angles of diffraction are small. Which one of the patterns, **A** to **D**, drawn on the same scale, is obtained when the grating is exchanged for one with a slit separation $\frac{d}{2}$?

6

- 7 A $1000 \,\mu\text{F}$ capacitor, initially uncharged, is charged by a steady current of $50 \,\mu\text{A}$. How long will it take for the potential difference across the capacitor to reach 2.5 V?
 - A 20 s
 - **B** 50 s
 - C 100 s
 - **D** 400 s
- 8 In experiments to pass a very high current through a gas, a bank of capacitors of total capacitance 50μ F is charged to 30 kV. If the bank of capacitors could be discharged completely in 5.0 ms what would be the mean power delivered?
 - A 22 kW
 - **B** 110 kW
 - C 4.5 MW
 - **D** 9.0 MW
- **9** For a particle moving in a circle with uniform speed, which **one** of the following statements is correct?
 - A The displacement of the particle is in the direction of the force.
 - **B** The force on the particle is in the same direction as the direction of motion of the particle.
 - **C** The momentum of the particle is constant.
 - **D** The kinetic energy of the particle is constant.
- 10 Which one of the following graphs correctly shows the relationship between the gravitational force, F, between two masses and their separation r.

11 When at the surface of the Earth, a satellite has weight W and gravitational potential energy -U. It is projected into a circular orbit whose radius is equal to twice the radius of the Earth. Which line, **A** to **D**, in the table shows correctly what happens to the weight of the satellite and to its gravitational potential energy?

	weight	gravitational potential energy
Α	becomes $\frac{W}{2}$	increases by $\frac{U}{2}$
В	becomes $\frac{W}{4}$	increases by $\frac{U}{2}$
С	remains W	increases by U
D	becomes $\frac{W}{4}$	increases by U

- 12 Two protons are 1.0×10^{-14} m apart. Approximately how many times is the electrostatic force between them greater than the gravitational force between them?

 - **D** 10^{42}
- 13 Particles of mass m carrying a charge Q travel in a circular path of radius r in a magnetic field of flux density B with a speed v. How many of the following quantities, if changed one at a time, would change the radius of the path?
 - *m*
 - Q
 - *B*
 - *v*
 - A one
 - **B** two
 - C three
 - **D** four

14 In the reaction shown, a proton and a deuterium nucleus, ${}_{1}^{2}H$, fuse together to form a helium nucleus, ${}_{2}^{3}He$

 $^{1}_{1}p + ^{2}_{1}H \longrightarrow ^{3}_{2}He + Q$

What is the value of Q, the energy released in this reaction?

mass of a proton $= 1.00728 \,\mathrm{u}$

mass of a 2_1 H nucleus = 2.01355 u

mass of a ${}^{3}_{2}$ He nucleus = 3.01493 u

- A 5.0 MeV
- **B** 5.5 MeV
- C 6.0 MeV
- **D** 6.5 MeV
- **15** For a nuclear reactor in which the fission rate is constant, which one of the following statements is correct?
 - A There is a critical mass of fuel in the reactor.
 - **B** For every fission event, there is, on average, one further fission event.
 - **C** A single neutron is released in every fission event.
 - **D** No neutrons escape from the reactor.

END OF SECTION A

There are no questions printed on this page