

GCE

Physics A

Unit PHA3/P

Copyright ${ }^{\circledR} 2003$ AQA and its licensors. All rights reserved.

Unit 3

1

AO3a : planning:

measurements:
(to determine the transit time of the falling cake-case)
use a stopwatch (not from rest)
(to determine (vertical) distance fallen)
use a (metre) ruler or tape measure (not from rest)
(to determine mass (weight) of cake-case)
measure with balance (not scales)
(to determine the cross-sectional area of the cake-case)
measure the (mean) diameter/radius using (300 mm) ruler
strategy:
find v using correct physics e.g. $\frac{\text { (vertical) distance }}{\text { transit time }}$
(no credit for measuring vertical distance in a certain time)
find A from $\frac{\pi(\text { diameter })^{2}}{4}$
D is same as weight (mg) (when falling at terminal velocity)
repeat either using different weights (e.g.stacked cases) or paper cases of different diameters (cross-sectional areas)
shape factor found by graphical method: expect explanation, suitable graph e.g. D against $\rho A v^{2} ;$ determine gradient

control:

any sensible e.g. avoid draughts

difficulties:

(difficulty + how overcome $=2$)
any two of the following
reduce uncertainty in timing
by making cases fall through large distance (e.g. $\geq 2 \mathrm{~m}$) and/or
by repeating readings and averaging
by avoiding parallax error (viewing at eye level)
reduce uncertainty in diameter/radius
by mea` suring across several diameters and averaging
reduce uncertainty in vertical distance
by ensuring ruler is vertical: expect description of how this is done

2 AO3b : implementing

(a)(i) accuracy
w to nearest mm , sensible value
θ_{1} and θ_{2} to nearest ${ }^{\circ}, \theta_{1}-\theta_{2} \geq 25^{\circ}$
(a)(ii)
n, no unit, in range 1.35 to 1.65
(b) tabulation
$s / \mathrm{mm} \quad \theta_{1} /{ }^{0} \quad \theta_{2} /{ }^{0}$
5 sets of s, θ_{1} and θ_{2}, s range $\geq 10.0 \mathrm{~cm}$ (mark deducted for each missing set or poor range)
(c) tabulation $\left(s \cos \theta_{2}\right)$
$\sin \left(\theta_{1}-\theta_{2}\right)$
(b) significant all s to nearest mm ,
figures all θ_{1} and θ_{2} to nearest ${ }^{\circ}$,
(c) both sets of derived data to 3 s.f. or 4 s.f.
(c) quality 4 of 5 points to $\pm 2 \mathrm{~mm}$ of straight line of positive gradient (providing suitably-scaled graph drawn)

3 AO3c : applying evidence and drawing conclusions processing
(c) axes
marked $\left.s \cos \theta_{2}\right) / \mathrm{mm}$ and $\sin \left(\theta_{1}-\theta_{2}\right) /($ no unit) (deduct $1 / 2$ for each missing, rounding down)
scale \quad suitable (e.g. 8×8)
$[5 \times 5,2 \times 8,8 \times 2$,]
points $\quad 5$ points plotted correctly
with straight best-fit line drawn

deductions

(d) $\quad G$ from suitable Δ (e.g. 8×8)
$G=w \pm 10 \%[\pm 20 \% \quad \checkmark]$
4 AO3d : evaluating evidence and procedures
(e)(i) $\quad \theta_{1}\left(\right.$ and $/$ or $\left.\theta_{2}\right)$ larger
so uncertainty in θ reduced
(e)(ii) measured (between emergent ray and projection of incident ray) at two places [repeated readings accepted]
use of set-square or protractor to ensure perpendicular distance is measured
(e)(iii) range of s decreased (not s smaller)
range of θ_{1} and θ_{2} reduced

