

Mark scheme June 2003

GCE

Physics A

Unit PA10

Copyright © 2003 AQA and its licensors. All rights reserved.

Unit 10

1 (a)(i) r = 0.012 (m) \checkmark (use of $v = 2\pi f r$ gives) $v = 2\pi 50 \times 0.012$ \checkmark $= 3.8 \text{ m s}^{-1} \checkmark (3.77 \text{ m s}^{-1})$

(a)(ii) correct use of $a = \frac{v^2}{r}$ or $a = \frac{3.8^2}{0.012}$ = 1.2×10^3 m s⁻² \checkmark [or correct use of $\alpha = \omega^2 r$] (allow C.E. for value of v from (i) (5)

(b) panel resonates ✓
(because) motor frequency = natural frequency of panel ✓
(2)
(7)

(a)(i) pd across resistor (= 3.0 – 2.2) = 0.8 (V) \checkmark (use of V = IR gives) $R \left(= \frac{0.8}{0.035} \right) = 23 \Omega \checkmark$ (22.9 Ω)

(a)(ii) charge flow in 1 s = 0.035 (C) \checkmark no. of electrons (in 1 s) $\left(= \frac{0.035}{1.6 \times 10^{-19}} \right) = 2.2 \times 10^{17} \checkmark (2.19 \times 10^{17})$ (4)

(b)(i) (use of
$$E = hf = \frac{hc}{\lambda}$$
 gives) $E = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{635 \times 10^{-9}}$ \checkmark
= 3.1(3) × 10⁻¹⁹ J \checkmark

(b)(ii) (use of P = VI gives) $P = 2.2 \times 0.035 = 0.077$ (W) \checkmark [or use of $P = I^2R$ with $R = \frac{2.2}{0.035} = 63$ (Ω)]

maximum no. of photons emitted per sec. = $\frac{0.077}{3.1 \times 10^{-19}}$ $= 2.5 \times 10^{17} \checkmark (2.48 \times 10^{17})$ (allow C.E. for value of E from (i) and value of P from (ii))

(allow C.E. for value of E from (i) and value of P from (ii)) (4)

(a)(i) (use of P = VI gives) $P (= 2.4 \times 20) = 48 \text{ W} \checkmark$

(a)(ii) incident (solar) power (= 1.4×2.5) = 3.5 (kW) \checkmark efficiency = $\frac{48}{3500}$ \checkmark = 0.014 \checkmark (or 1.4%)

[or efficiency =
$$\frac{48}{2.5}/1400$$
]

(allow C.E. for incorrect values of input and output power)

(b)(i) in 1 s source emits 1.1×10^{14} particles \checkmark energy emitted in 1 s = $1.1 \times 10^{14} \times 5.1 \times 1.6 \times 10^{-13}$ (J) \checkmark (= 90 J)

(b)(ii) $T_{1/2} = \frac{\ln 2}{\lambda} + \text{correct use or } \lambda = \frac{\ln 2}{90 \times 365 \times 24 \times 3600} \checkmark$

$$= 2.44 \times 10^{-10} \text{ s}^{-1} \checkmark$$
[or $\lambda = \frac{\ln 2}{90} = 7.7 \times 10^{-3} \text{ yr}^{-1}$]

(b)(iii) no. of nuclei $\left(= \frac{\text{activity}}{\text{decay constant}} = \frac{11 \times 10^{14}}{2.44 \times 10^{-10}} \right) = 4.5(1) \times 10^{23} \checkmark$
(allow C.E. for incorrect value of λ in (ii))

mass of isotope $= \frac{4.51 \times 10^{23} \times 0.239}{6.02 \times 10^{23}} \checkmark$
(allow C.E. for incorrect no. of nuclei)

(7)

(1/1)

4

(a)(i) $= \frac{120 \times 10^6 \text{ (m}^2)}{1000} \checkmark$
mass $= \frac{120 \times 10^6 \times 10 \times 1100}{1000} = 1.3 \times 10^{12} \text{ kg} \checkmark$
(ii) (use of $E_p = mgh$ gives) $\Delta E_p = 1.3 \times 10^{12} \times 9.8 \times 5 = 6.4 \times 10^{13} \text{ J} \checkmark$
(allow C.E. for incorrect value of mass from (i))

(a)(i) area =
$$120 \times 10^6$$
 (m²) \checkmark
mass = $120 \times 10^6 \times 10 \times 1100 = 1.3 \times 10^{12}$ kg \checkmark

(ii) (use of $E_p = mgh$ gives) $\Delta E_p = 1.3 \times 10^{12} \times 9.8 \times 5 = 6.4 \times 10^{13} \text{ J}$

(a)(iii) power (from sea water) =
$$\frac{6.4 \times 10^{13}}{6 \times 3600}$$

[or correct use of $P = Fv$]
$$= 3000 \text{ (MW)} \checkmark$$
(allow C.E. for incorrect value of ΔE_p from (ii))
power output = $3000 \times 0.4 \checkmark$

$$= 120 \text{ MW} \checkmark$$
(allow C.E. for incorrect value of power)

initial acceleration/increase of speed ✓ (a)(i)reaches a constant speed/velocity ✓ acceleration decreases to become zero (at this speed) ✓

drag/frictional forces increases with speed ✓ (a)(ii) drag equal to weight (- upthrust) ✓ no resultant force at terminal speed [or balanced forces or forces cancel] ✓

 $_{\rm max}(5)$

all values correct and to 3 or 4 s.f. ✓

(d)(i) gradient =
$$\left((e.g.) \frac{2.40 - 1.00}{0.7} \right) = 2.0 \checkmark$$

 $n = \text{gradient} (= 2) \checkmark$

(d)(ii) intercept on y-axis =
$$\log k$$

intercept = 1.0
 $k = (10^{1.0}) = 10$
units of k: for $n = 2$, mm⁻¹ s⁻¹

$$\max(5)$$

$$(16)$$

(4)

6(a)(i) volume of air is less with the powder present
$$\checkmark$$
 pressure α 1/volume so pressure is greater \checkmark

(a)(ii) initial volume =
$$3.5 \times 10^{-4}$$
 (m³) \checkmark final volume = 2.5×10^{-4} (m³) \checkmark

initial volume =
$$3.5 \times 10^{-4}$$
 (m³) \checkmark
final volume = 2.5×10^{-4} (m³) \checkmark
final pressure = $\frac{100 \times 10^3 \times 3.5 \times 10^{-4}}{2.5 \times 10^{-4}}$ \checkmark = 140×10^3 Pa \checkmark

[alternative: no.of moles (n) (=
$$\frac{p_0 V_0}{RT_0}$$
) = $\frac{1.0 \times 10^5 \times 3.5 \times 10^{-4}}{RT_0}$ \checkmark

final pressure
$$\left(=\frac{nRT_0}{V_1}\right) = \frac{1.0 \times 10^5 \times 3.5 \times 10^{-4}}{2.5 \times 10^{-4}} \checkmark = 140 \text{ kPa} \checkmark$$
 (6)

(b)(i) volume of powder
$$\left(=\frac{\text{mass}}{\text{density}} = \frac{0.13}{2700}\right) = 4.8 \times 10^{-5} \text{ m}^3 \checkmark$$

(b)(ii) assuming powder volume as in (b)(i),
initial volume =
$$(3.5 - 0.48) \times 10^{-4}$$
 (m³) \checkmark
final volume = $(2.5 - 0.48) \times 10^{-4}$ (m³) \checkmark

final pressure =
$$\frac{100 \times 10^3 \times 3}{2} = 150 \times 10^3 \text{ Pa}$$

test successful as calculated final pressure = measured final pressure \checkmark (5)

7
(a)(i) (in 1 s), $E = 0.045 \times 4200 \times (47 - 15)$

 $= 6050 \, \text{J} \checkmark$

(a)(ii)
$$P\left(=\frac{E}{t}\right) = 6.0 \text{ kW } \checkmark$$

(b)(i) (use of
$$P = VI$$
 gives) $I\left(=\frac{6050}{230}\right) = 26 \text{ A} \checkmark$ (26.3 A)
(allow C.E. for value of P from (a))

(b)(ii) radius =
$$1.2 \times 10^{-3}$$
 (m) \checkmark
cross-sectional area = $\pi (1.2 \times 10^{-3})^2$ (or 4.5×10^{-6} (m²)) \checkmark

$$\frac{R}{l} = \frac{\rho}{A} \checkmark$$

$$= \frac{1.7 \times 10^{-8}}{4.5 \times 10^{-6}} \checkmark$$

$$= 3.8 \times 10^{-3} \Omega \text{ m}^{-1} \checkmark$$
(allow C.E. for value of A)

(b)(iii)
$$\frac{V}{l} \left(= \frac{IR}{l} = 26 \times 3.8 \times 10^{-3} \right) = 0.1 \text{ (V m}^{-1}) \text{ (per wire)}$$

two wires per cable gives pd per metre = 2 × 0.1 \checkmark (= 0.20 V m⁻¹) \checkmark

(iv) maximum length
$$\left(=\frac{6}{0.2}\right) = 30 \text{ m} \checkmark$$
 (9)

8

(a) $mg = T \cos 6 \checkmark$ $F = T \sin 6 \checkmark$ hence $F = mg \tan 6 \checkmark$ [or correct use of triangle: \checkmark for sides correct, \checkmark for 6° , \checkmark for $\tan 6 = F/mg$ or $F\Delta x = mg \Delta h$, $\tan \theta = \frac{\Delta h}{\Delta x} \tan 6^{\circ} = \frac{F}{mg}$ (3)

(b)(i) (use of
$$E = \frac{V}{d}$$
 gives) $E = \frac{4200}{60 \times 10^{-3}} = 7.0 \times 10^4 \text{ V m}^{-1} \checkmark$

(ii) (use of
$$Q = \frac{F}{E}$$
 gives) $Q\left(=\frac{mg \tan 6}{E}\right) = \frac{2.1 \times 10^{-4} \times 9.8 \tan 6}{7 \times 10^{4}}$ \checkmark (allow C.E. for value of E from (i))

(3) (6)

Quality of Written Communication (Q1(b) and Q6(a)(i)
$$\checkmark\checkmark$$
 (2)