

ASSESSMENT and QUALIFICATIONS ALLIANCE

# Mark scheme June 2003

## GCE

## Physics A

Unit PA01

Copyright  $^{\odot}$  2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: *Director General* 

### Unit 1

#### 1

1  
(a) number of protons = number of electrons (e.g.14) 
$$\checkmark$$
  
number of protons + number of neutrons = 28  $\checkmark$  (2)  
(b)(i) nuclei with the same number of protons  $\checkmark$   
(b)(ii)  $(137 - 55) = 82 \checkmark$   
(b)(iii)  $\frac{Q}{m} = \frac{92 \times 1.60 \times 10^{-19}}{2.36 \times 1.67 \times 10^{-277}} \checkmark$   
= 3.73  $\times 10^{7}$  (C kg<sup>-1</sup>)  $\checkmark$   
(b)(iv)  $X (= 236 - 137 - 4) = 95 \checkmark$  (6)  
(b)(iv)  $X (= 236 - 137 - 4) = 95 \checkmark$  (6)  
(1) positron, neutron, neutrino, positive pion  $\checkmark \checkmark$  (if all correct)  
(lose  $\checkmark$  for each error) (4)  
(b)(i)  $(\mu T) \rightarrow e^{-} + \overline{V_e} + v_{\mu} \checkmark$   
(b)(ii) difference: mass or half-life or generation of lepton  $\checkmark$   
similarity: both leptons or both negatively charged  $\checkmark$  (3)  
(c)  $\downarrow e^{-} = W \swarrow R$  (3)  
(1) (4)

3

 (a) there must be a large distance between collisions to allow electrons to gain enough energy ✓
 [or the vapour must not completely absorb the electrons] (1)

(b) the mercury vapour emits ultra violet (radiation)  $\checkmark$ the coating absorbs electromagnetic radiation/light from the mercury  $\checkmark$ emits longer wavelengths/lower frequencies  $\checkmark$ in the visible region  $\checkmark$  $\max(3)$ (4) 4 the minimum frequency (of radiation)  $\checkmark$ (a) required to eject photoelectrons  $\checkmark$ (2) (use of  $\phi = hf_0$  gives)  $\phi = 6.63 \times 10^{-34} \times 4.85 \times 10^{14}$   $\checkmark$ (b)(i)  $= 3.22 \times 10^{-19} (J)$   $\checkmark$ (b)(ii)  $\phi \left( = \frac{3.22 \times 10^{-19}}{1.60 \times 10^{-19}} \right) = 2.01 \text{ (eV) } \checkmark$ (allow C.E. for value of  $\phi$  from (i)) (3) (c) line parallel to the given line  $\checkmark$ with half the value of the *x*- intercept  $\checkmark$ (2) (d) statement : increase the light intensity/brightness  $\checkmark$ more incident photons (per second) explanation : (any two) ✓✓ one photon interacts with one electron more emitted electrons (per second) greater rate of flow charge <u>(3)</u> (10)

5

(a)(i) (use of 
$$n = \frac{c_1}{c_2}$$
 gives)  $c_{\text{glass}} \left( = \frac{3.00 \times 10^8}{1.45} \right) = 2.07 \times 10^8 \text{ m s}^{-1} \checkmark$ 

(a)(ii) use of 
$$\frac{\sin\theta_1}{\sin\theta_2} = \frac{c_1}{c_2}$$
  $\checkmark$   
 $c_{\text{liquid}} = \frac{2.07 \times 10^8 \times \sin 29.2^\circ}{\sin 26.6^\circ} = 2.26 \times 10^8 \text{ m s}^{-1} \checkmark$  (3)  
(allow C.E. for values of  $c_{\text{glass}}$  from (i))

(b) use of 
$$_{1}n_{2} = \frac{c_{1}}{c_{2}}$$
 and  $_{1}n_{2} = \frac{n_{2}}{n_{1}} \checkmark$   
to give  $n_{\text{liquid}} = \frac{1.45 \times 2.07 \times 10^{8}}{2.26 \times 10^{8}} = 1.33 \checkmark$ 

$$\left[ \text{or } n_l = \frac{c_1}{c_{\text{liquid}}} = \frac{3 \times 10^8}{2.26 \times 10^8} = 1.33 \right] \text{ (allow C.E. for value of } c_{\text{liquid}} \text{ )}$$

[or use 
$$_1n_2 = \frac{\sin\theta_1}{\sin\theta_2}$$
 and  $_1n_2 = \frac{n_2}{n_1}$  to give correct answer] (2)

(c) diagram to show : total internal reflection on the vertical surface  $\checkmark$ refraction at bottom surface with angle in air greater than that in the liquid (29.2°)  $\checkmark$  (2) (7)

(a)(i) an electron moves <u>up</u> from one energy level to another  $\checkmark$ (a)(ii) an electron is removed from an atom  $\checkmark$  (2) (b) (use of  $hf = E_2 - E_1$  gives)  $f = (2.56 - 1.92) \times 10^{-19} \checkmark / 6.63 \times 10^{-34}$   $= 9.65 \times 10^{13}$  Hz  $\checkmark$ (allow C.E. for incorrect  $\Delta E$ ) (2)

<u>(4)</u>

6

(a)(i) electrons behave as both particles and waves  $\checkmark$ 

(a)(ii) particle: deflection in an electromagnetic field or other suitable examples  $\checkmark$ wave: electron diffraction  $\checkmark$  (3)

(b) (use of 
$$\lambda = \frac{h}{mv}$$
 gives)  $v \left( = \frac{h}{m\lambda} \right) = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 1.7 \times 10^{-10}} \checkmark$   
=  $4.28 \times 10^6 \text{ m s}^{-1} \checkmark$  (2)

Quality of Written Communication (Q3(b) and Q4(d) 
$$\checkmark \checkmark$$
(2)(2)(2)