AS
 PHYSICS
 7407/2

Paper 2
Mark scheme
June 2023
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]
Physics - Mark scheme instructions to examiners

1. General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- extra information to help the Examiner make his or her judgement and help to delineate what is acceptable or not worthy of credit or, in discursive answers, to give an overview of the area in which a mark or marks may be awarded.

The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right-hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent.

2. Emboldening

2.1 In a list of acceptable answers where more than one mark is available 'any two from' is used, with the number of marks emboldened. Each of the following bullet points is a potential mark.
2.2 A bold and is used to indicate that both parts of the answer are required to award the mark.
2.3 Alternative answers acceptable for a mark are indicated by the use of or. Different terms in the mark scheme are shown by a / ; eg allow smooth / free movement.

3. Marking points

3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which candidates have provided extra responses. The general principle to be followed in such a situation is that 'right + wrong = wrong'.

Each error/contradiction negates each correct response. So, if the number of errors/contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (often prefaced by 'Ignore' in the mark scheme) are not penalised.

3.2 Marking procedure for calculations

Full marks can usually be given for a correct numerical answer without working shown unless the question states 'Show your working'. However, if a correct numerical answer can be evaluated from incorrect physics then working will be required. The mark scheme will indicate both this and the credit (if any) that can be allowed for the incorrect approach.

However, if the answer is incorrect, mark(s) can usually be gained by correct substitution/working and this is shown in the 'extra information' column or by each stage of a longer calculation.

A calculation must be followed through to answer in decimal form. An answer in surd form is never acceptable for the final (evaluation) mark in a calculation and will therefore generally be denied one mark.

3.3 Interpretation of 'it'

Answers using the word 'it' should be given credit only if it is clear that the 'it' refers to the correct subject.

3.4 Errors carried forward, consequential marking and arithmetic errors

Allowances for errors carried forward are likely to be restricted to calculation questions and should be shown by the abbreviation ECF or conseq in the marking scheme.

An arithmetic error should be penalised for one mark only unless otherwise amplified in the marking scheme. Arithmetic errors may arise from a slip in a calculation or from an incorrect transfer of a numerical value from data given in a question.

3.5 Phonetic spelling

The phonetic spelling of correct scientific terminology should be credited (eg fizix) unless there is a possible confusion (eg defraction/refraction) with another technical term.

3.6 Brackets

(.....) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

3.7 Ignore / Insufficient / Do not allow

'Ignore' or 'insufficient' is used when the information given is irrelevant to the question or not enough to gain the marking point. Any further correct amplification could gain the marking point.
'Do not allow' means that this is a wrong answer which, even if the correct answer is given, will still mean that the mark is not awarded.

3.8 Significant figure penalties

Answers to questions in the practical sections (7407/2 - Section A and 7408/3A) should display an appropriate number of significant figures. For non-practical sections, an A-level paper may contain up to 2 marks (1 mark for AS) that are contingent on the candidate quoting the final answer in a calculation to a specified number of significant figures (sf). This will generally be assessed to be the number of sf of the datum with the least number of sf from which the answer is determined. The mark scheme will give the range of sf that are acceptable but this will normally be the sf of the datum (or this sf -1).

An answer in surd form cannot gain the sf mark. An incorrect calculation following some working can gain the sf mark. For a question beginning with the command word 'Show that...', the answer should be quoted to one more sf than the sf quoted in the question eg 'Show that X is equal to about 2.1 cm ' -
answer should be quoted to 3 sf. An answer to 1 sf will not normally be acceptable, unless the answer is an integer eg a number of objects. In non-practical sections, the need for a consideration will be indicated in the question by the use of 'Give your answer to an appropriate number of significant figures'.

3.9 Unit penalties

An A-level paper may contain up to 2 marks (1 mark for AS) that are contingent on the candidate quoting the correct unit for the answer to a calculation. The need for a unit to be quoted will be indicated in the question by the use of 'State an appropriate SI unit for your answer'. Unit answers will be expected to appear in the most commonly agreed form for the calculation concerned; strings of fundamental (base) units would not. For example, 1 tesla and $1 \mathrm{~Wb} \mathrm{~m}^{-2}$ would both be acceptable units for magnetic flux density but $1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \mathrm{~A}^{-1}$ would not.

3.10 Level of response marking instructions

Level of response mark schemes are broken down into three levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are two marks in each level.

Before you apply the mark scheme to a student's answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Determining a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student's answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level. ie if the response is predominantly level 2 with a small amount of level 3 material it would be placed in level 2.

The exemplar materials used during standardisation will help you to determine the appropriate level. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

Question	Answers	Additional Comments/Guidance	Mark	AO
01.1	$6.75 \checkmark$	CAO	1	AO3
Question	Answers	Additional Comments/Guidance	Mark	AO
01.2	any sensible answer describing possible consequences of use of the thimble, e.g. can cause the wire to be distorted/damaged; or reduces the diameter. \checkmark	Accept 'the frame of the micrometer might become warped' / 'damage might occur to the screw thread mechanism' / 'may lead to the reading shown being smaller than true value' Condone 'squeezed'. Condone 'change diameter'. Reject 'might change the reading', 'affect results', 'cause a reading below zero', 'could lead to systematic error', 'over-tighten' or 'holds wire more securely'.	1	AO1
Question	Answers	Additional Comments/Guidance	Mark	AO
01.3	fully correct calculation $1_{1}{ }_{2} \checkmark$ OR partly correct calculation ${ }_{12} \checkmark$	$((2 \times 1.2 \%)+2.0 \%=) 4.4 \%_{1} \checkmark_{2} \checkmark$ For ${ }_{12} \checkmark$ allow any of $(2 \times 1.2 \%)$ OR 2.4% OR 1.2% $+2.0 \%$ OR 3.2\% OR $1.44 \%+2.0 \%$ OR 3.4% seen in working. For 1 mark condone misreading leading to ' $(2 \times$ $2.0 \%)+1.2 \%=5.2 \%$ ' OR ' $4 \%+1.2 \%=5.2 \%$ '.	2	AO2

Question	Answers	Additional Comments/Guidance	Mark	AO
01.4	length of wire between oscillator and pulley $1_{1} \downarrow$ mass of $\mathbf{M}_{2} \checkmark$	For ${ }_{1} \checkmark$ allow 'distance between oscillator and pulley' or 'length of horizontal/oscillating wire' or use of annotation to Figure 2 to identify correct dimension with a symbol, eg L. For ${ }_{1} \checkmark$ 'length of wire' is insufficient. For ${ }_{2} \checkmark$ allow 'weight of M ' or 'suspended mass'. For ${ }_{2} \downarrow$ accept 'tension in wire'. Reject bland 'M' or 'the mass' or 'tension'. Treat 'mass per unit length of wire' as neutral.	2	AO3

Question	Answers	Additional Comments/Guidance			Mark	AO
01.5	calculates $d \times f$ at least twice ${ }_{1}$ states how their calculations support a conclusion that f is inversely proportional to $d_{2} \checkmark$				2	AO3
		d / mm	f / Hz	$(d \times f) / \mathrm{mm} \mathrm{s}^{-1}$		
		0.85	28.5	24.2 (24.23)		
		0.68	36.0	24.5 (24.48)		
		0.54	44.5	24.0 (24.03)		
		0.44	55.5	24.4 (24.42)		
		0.37	65.0	24.1 (24.05)		
		Allow reverse working or use of readings from a line of best-fit. For ${ }_{1} \checkmark$ condone misreading of scale of one axis, or one misreading. $\mathrm{For}_{2} \checkmark$ apply list principle to calculations i.e. for 2 or 3 calculations, all must be correct; for 4 calculations, condone 1 error; for 5 calculations, condone 2 errors. Do not allow 1 sf for constant of proportionality.				

Question	Answers	Additional Comments/Guidance	Mark	AO
01.6	f values increase by $\sqrt{2} 2^{2}$	For ${ }_{1} \downarrow$ allow (all) points / line / graph move(s) up. Must not imply d changes OR points / line moves right OR that μ changes. Treat 'graph is stretched upwards / in the y direction' as neutral.	2	AO3
Total			10	

Question	Answers	Additional Comments/Guidance	Mark	AO
$\mathbf{0 2 . 1}$	identifies appropriate equipment and makes a relevant comment about how it is used \checkmark	Use of plumb line (accept 'mass / weight on string') OR use of a metre ruler made vertical with a set-square in contact with the floor OR using a (long) spirit level. Comments that the string of the plumb line / edge of metre ruler / edge of spirit level should be in contact with the projecting end of the track. Give credit for suitable annotation to Figure 4	1	AO1

Question	Answers	Additional Comments/Guidance	Mark	AO
02.2	rejects anomalous mark (at 607) 1^{\checkmark}		3	A01
	calculates mean from readings of marks ${ }_{2} \checkmark$	For ${ }_{2} \checkmark$ expect to see readings of $581,583,583$, 586,588 (and 607) for centres of circles. Allow readings from left edge or from right edge, but not a mix. Reject readings given to a precision greater than 0.5 mm . Allow an arithmetic error. Expect to see $\frac{2921}{5}$ or $\frac{3528}{6}$.		
	$584(\mathrm{~mm})^{\text {a }}$	For $3 \sqrt{ }$ allow 588 (mm) For $3^{\checkmark} 3$ sf answer only.		

Question	Answers	Additional Comments/Guidance	Mark	AO
02.3	ruled best-fit line passing below $3^{\text {rd }}$ plot and above $2^{\text {nd }}$ and $4^{\text {th }}$ plots ${ }_{1} \checkmark$ finds gradient and multiplies by $\frac{7}{20} 2^{\checkmark}$ H in result in range 0.78 to 0.833^{\checkmark}	Withhold ${ }_{1} \checkmark$ if line is poorly marked. For ${ }_{2} \checkmark$ condone one read-off error. Gradient from h step $\geq 0.10 \mathrm{~m}$. Expect gradient in range 2.20 - 2.37. Allow any appropriate use of $\frac{7}{20}$. For ${ }_{3} \checkmark 2$ sf only. Allow ${ }_{1} \checkmark{ }_{2}{ }_{3} \checkmark=2$ MAX for H in range obtained using co-ordinates of a point on the line. Allow ${ }_{1} \times_{2} \times_{3} \checkmark=1$ MAX for H in range obtained using a plotted point if no best-fit line is drawn.	3	AO1

Question	Answers	Additional Comments/Guidance	Mark	AO
02.4	idea that absolute uncertainty is the same but value of t is larger \checkmark	Allow sample calculation or reference to equation. Condone 'uncertainty' for 'absolute uncertainty'.	1	AO1

Question	Answers	Additional Comments/Guidance	Mark	AO
02.5	draw a best-fit curve/line and read-off (α) where value of t is a minimum 1^{\checkmark} take more readings around α when t has minimum value, or words to that effect (owtte) 2^{\checkmark}	For ${ }_{1} \checkmark$ 'draw a line' is not enough. Accept read off at 'bottom of curve' / 'where the gradient is zero' / 'at the turning point'. Annotations to Figure 8 can earn MP1; any line of best-fit drawn does not need to be neat. For ${ }_{2} \checkmark$ reject bland 'repeat readings'.	2	AO2
Total			10	

Question	Answers	Additional Comments/Guidance	Mark	AO
$\mathbf{0 3 . 1}$	idea that moments are balanced or that there is no resultant moment \checkmark	Answer must relate to the context e.g. reference to \mathbf{Q} or weight of food/spoon Allow 'force \times distance' or ' $F \times$ d' for 'moment'.	2	AO1
	(because) (overall) centre of mass is now beneath/at \mathbf{Q} OR line of action of (overall) weight is through $\mathbf{Q} \checkmark$	'Anticlockwise moment of weight of spoon about \mathbf{Q} = clockwise moment of weight of M about \mathbf{Q} ' gains both marks.		

Question	Answers	Additional Comments/Guidance	Mark	AO
03.2	statement of balanced moments seen e.g. $m g x=M g(16-4-$ x), leading to required formula	For 1 mark: condone absent g if credible evidence for ' $12-x^{\prime}$ presented e.g. $m x=M(16-4-x)$ or $m x=M(28-16-x)$ OR condone lack of evidence for ' $12-x$ ' if g is shown e.g. $m g x=M g(12-x)$. Need to see g and evidence for ' $12-x^{\text {' }}$ for both marks. Evidence for ' $12-x$ ' need not be in an expression of a moment. Allow 9.81 or 9.8 instead of g.	2	AO2

Question	Answers	Additional Comments/Guidance	Mark	AO
03.3	max two from: - reads off a pair of values (e.g. $115 \mathrm{~g}, 5.0 \mathrm{~cm}$) - substitutes into formula - multiplies their m by g answer that rounds to 1.5 or $1.6(\mathrm{~N}) \checkmark$	Allow correct conversion of M to kg and/or x to m for read offs or in the substitution. Expect to see 160 g for mass of spoon. Allow credit for an algebraic solution to get m : e.g. when $m=M, \frac{m}{M}=\frac{(12-x)}{x}=1$ So, $12=2 x, x=6.0 \mathrm{~cm}$. Reads off M at 6.0 cm to get 160 g .	3	AO1

Question	Answers	Additional Comments/Guidance	Mark	AO
03.4	(absolute) uncertainty in M increases as M increases (because) as M increases: marks on the scale get closer OR range of values of M for a fixed range of x increases (or vice versa) the gradient (in Figure 11) increases so the scale markings are unequal owtte	MP1 only awarded supported by some relevant explanation. Treat 'percentage' uncertainty as neutral. Allow MP2 and MP3 for quantitative evidence given using Figure 11 e.g. from 0 g to $25 \mathrm{~g}, \Delta x \sim 1.5 \mathrm{~cm}$; from 175 g to $200 \mathrm{~g}, \Delta x \sim 0.4 \mathrm{~cm}$ OR calculates gradients at low and high M.	3	AO3
Total			10	

Question	Answers	Additional Comments/Guidance	Mark	AO
$\mathbf{0 4 . 1}$	ray is incident along/at the normal owtte \checkmark	Allow perpendicular/90 to the surface/block. Allow 'angle of incidence is 0°. Reject 'towards the normal'.	1	AO1

Question	Answers	Additional Comments/Guidance	Mark	AO
04.2	correct use of Snell's law \checkmark $21^{\circ} \checkmark$	Expect to see $1.84 \sin 15=1.33 \sin \theta$ Calculator value for θ is 20.9814°	2	AO2

Question	Answers	Additional Comments/Guidance	Mark	AO
04.3	(intensity increases because) total internal reflection occurs owtte idea that the lower intensity to left of \mathbf{T} is due to partial reflection	Reject 'more total internal reflection occurs'. 'There is more reflection' is insufficient. MP2 must be in terms of reflected, not refracted, light. Allow answers in terms of x.	2	AO2

Question	Answers	Additional Comments/Guidance	Mark	AO
04.4	T will move to right OR x will increase \checkmark (because) critical angle will increase \checkmark	MP1 requires some relevant justification e.g. ratio $\frac{n_{2}}{n_{1}}$ will be closer to 1 .	2	AO2

Question	Answers	Additional Comments/Guidance	Mark	AO
04.5	uses $\tan \theta=\frac{69}{60}$ to calculate correct θ_{c} to $2 \mathrm{sf} \min$ uses $\sin \theta_{\mathbf{c}}=\frac{n}{1.84}$ to determine refractive index uses their refractive index to at least 4 sf to obtain the concentration	MP1: Calculator value for θ_{c} is 48.99091° MP2: Allow ecf from MP1. Expect $n=1.388$. MP3: Allow ecf from MP2. Expect 33.5\%.	3	AO3
Total			10	

16	A	an electron and an antineutrino.
17	C	3.6 m
18	D	no change no change
19	B	0.73Ω
20	D	
21	A	$\mathbf{X}, \mathbf{Y}, \mathbf{Z}$
22	C	20682
23	B	momentum
24	D	$\pi \frac{\lambda}{2}$
25	C	increase decrease
26	C	$v \sqrt{2}$
27	D	$1.5 \times 10^{11} \mathrm{~Pa}$
28	B	zero infinite

29	B	
$\mathbf{3 0}$	C	1.7×10^{19}
31	A	4.5 V to 6.0 V
32	B	
33	B	$\frac{1}{2}$
34	D	800 N

[^0]: Copyright information
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

 Copyright © 2023 AQA and its licensors. All rights reserved.

