

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level

PHYSICAL SCIENCE

Paper 3 SPECIMEN MARK SCHEME

8780/03 For Examination from 2011

Duration

www.trenepapers.com

MAXIMUM MARK: 80

This document consists of **5** printed pages and **1** blank page.

[Turn over

	% uncertainty in volume = $3 \times (0.1 / 6) \times 100 = 5.0\%$ (\rightarrow uncertainty in density = 0.18 g cm ⁻³)						[1]	
	density = 2.7 \pm 0.2 g cm ⁻³ (e.c.f and answer 2.69 \pm 0.18 g cm ⁻³ scores 3/4 marks)					[1]		
								[Total: 5]
(a)	ball	l movi	ing ir	n opposite dir	ectic	on (after coll	ision)	[1]
(b)	(i)	char (corr = 5.7	nge in rect v 76 N	n momentum /alues, 1 mar s (allow 5	= 1. k; cc .8)	2 (4.0 + 0.8 prrect sign {\) values added}, 1 mark)	[2] [1]
	(ii)	force = 5.7 = 72	e = ∆ 76 / 0 N	.p / Δ <i>t</i> or <i>m</i> Δι).08 or 1.2 ×	/ / ∆t 4.8 /	0.08		[1] [1] [1]
(c)) $5.76 = 3.6 \times v$ $v = 1.6 \text{ m s}^{-1}$					[1] [1]		
(d)	(tot	al) kir	netic	energy not c	onse	rved		[1] [Total: 10]
(a)	carbonates become more stable down the Group/higher decomposition temperature [' cation/ M^{2+} radius/size increases down the group/ M^{2+} charge density decreases [' anion/carbonate ion/CO ₃ ²⁻ suffers less polarisation/distortion ['				ature [1] [1] [1]			
(b)	(i)	Cu O C H	= = =	57.7/63.5 36.2/16 5.4/12 0.9/1		0.91 2.26 0.45 0.90	correct ratios hence Cu₂O₅CH₂	[1]
	(ii)	Cu ²⁺	(aq)	or [Cu(H ₂ O)6	6] ²⁺ N	IOT [Cu(H ₂ (O) ₄] ²⁺	[1]
	(iii)	D is Cu₂0 221 ∴ 10	CuC D₅C⊦)	$H_2 \rightarrow 2CuC$ $H_2 \rightarrow 159 ($ $\rightarrow 10 \times 7$	oxide + C both 159 /	e O₂ + H₂O [1 <i>M</i> ₅s) 221 = 7.2 g] a (7.19)	[1] [1] [1] [1]
	(iv)	E is	copr	er: F is Fe ²⁺	/ Fe	SO4		[1]

(iv) E is copper; F is Fe⁻⁷ / Fe SO4 [1] Fe + Cu²⁺ \rightarrow Fe²⁺ + Cu (or full equation) [1]

(v) redox/displacement

[1]

[1]

[1] [1]

1

2

3

(a) 1.7 %

(b) <u>use of</u> density = mass / volume (= $580 / 6^3$) = 2.685 g cm⁻³ ... (allow 2.68, 2.69, 2.7)

4	(a)	either phase difference is π rad / 180° or path difference (between waves from S_1 and S_2) is ½ λ or (n + ½) λ	[1]
		either same amplitude / intensity at M or ratio of amplitudes is 1.28 / ratio of intensities is 1.28	[1]
	(b)	path difference between waves from S ₁ and S ₂ = 28 cm wavelength changes from 33 cm to 8.25 cm minimum when λ = (56 cm,) 18.7 cm, 11.2 cm, (8.0 cm) so two minima	[1] [1] [1] [1]
		[Tota	l: 6]
5	(a)	(i) $CH_2=CH_2CH_2CH_3$ / pent-1-ene accept C_3H_7 on RHS	[1]
		(ii) 8	[1]
	(b)	(i) e.g. $C_{40}H_{82} \rightarrow C_{16}H_{34} + 2 C_{12}H_{24}$ OR $C_{40}H_{82} \rightarrow C_{16}H_{34} + C_{24}H_{48}$ etc	[1]
		(ii) heat + catalysts/SiO ₂ /A l_2 O ₃ /Pt/ceramic/pumice/zeolite etc. If temp given >500 °C	[1]
		(iii) bonds broken: $4(C-C) = 4 \times 350 = 1400 \text{ kJ mol}^{-1}$ bond formed: $2(C=C) = 2 \times 610 = 1220 \text{ kJ mol}^{-1}$ $\Delta H = +180 \text{ kJ mol}^{-1}$	[1]
		from eqn in (a)(i) : +90 kJ mol ⁻¹ for each C=C formed (could be multiples of 90)	
		(iv) endothermic reactions $\Delta H > 0$	[1]
		[Tota]	l: 6]
6	(a)	$N_2 + 3H_2 \rightleftharpoons 2NH_3$ exothermic	[1]
	(b)	pressure. 5O atm / 50000 Pa/N m ⁻³ upwards; temp 400-600 °C;	[2]
		(1 mark for 2 correct; 2 marks for all 3 conditions correctly stated)	
	(c)	too high a temp and equilibrium favours LHS, less ammonia at equilibrium too low a temp, rate too slow/not enough molecules have E_a	[1] [1]
	(d)	excess (hence uncontrolled) nitrates leach out of fields into streams, seas (1) bacteria or algae grow fast/use oxygen/clog up water (1) balance destroyed/fish unable to live (1)	
		process called eutrification (1) any 2	[2]
		[Total	l: 7]

7	(a)	(i)	arrow in upward di	rection, foot near P	[1]
		(ii)	curved path, consi then straight (with	stent with (i) between plates no kink at change-over)	[1] [1]
	(b)	(i)	F = E q = 5.0 × 10 ⁴ × 1.6 ×	10 ⁻¹⁹	[1]
			= 8.0 × 10 × 10		[1]
		(ii)	a = F/m = $(8.0 \times 10^{-15})/(9.1)$ = $8.8 \times 10^{15} \text{ m s}^{-2}$	× 10 ⁻³¹)	[1]
					[Total: 7]
8	(a)	<u>use</u> resi	\underline{of} either $P = VI$ and stance = 38.4 Ω	d V = IR or P = V ² / R	[1] [1]
	(b) zero 1.5 kW 3.0 kW 0.75 kW 2.25 kW				[1] [1] [1] [1] [1]
					[Total: 7]
9	(a)	(i)	orange ppt	allow red to yellow/crystals or	solid [1]
		(ii)	ketone		[1]
		(iii)	$CH_3CH_2COCH_3$ or	butanone	[1]
	(b)	(i)	NaBH₄ allow NaA <i>l</i>	$ m H_4$ (Li Al $ m H_4$) (1) $ m H_2/ m Ni$ or Pt	[1]
		(ii)	secondary alcohol		[1]
		(iii)	CH ₃ CH(OH)CH ₂ Cl	H ₃	[1]
					[Total: 6]

10	(a)	(i)	energy/enthalpy change when 1 mol of a compound is formed from its element at 298 K / 25°C and100 kP / 1 atm	s [1] [1]
		(ii)	$H_2(g) + \frac{1}{2}O_2(g) \downarrow H_2O(I)$	[1]
	(b)	(i)	$Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$	[1]
		(ii)	heat released = $mc\Delta T$ = 200 × 4.2 × 12.2 = 10.25 kJ	[1]
		(iii)	$\Delta H = (-10.25) \div 1.00 / 40.1 = -411 \text{ kJ mol}^{-1} \text{ sign necessary}$ for ecf, $\Delta H_{\text{reacn}} = 40.1 \times [\text{answer to } (b)(ii)]$	[1]
		(iv)	V = nRT/P	[1]
			$=\frac{(1/40.1)\times 8.31\times 300}{1\times 10^5} \qquad 6.22\times 10^{-4} \text{ m}^3$	[1]
		ć	allow ecf on error in moles of Ca in (b)(iii) and on error in equation in (b)(i)	
				[Total: 8]

11 (a) rate of decay/activity/decay (of nucleus) is not affected by external factors [2] (If states specific factor(s), such as temperature/pressure/chemical bonding rather than giving general statement above, then give 2 marks for two stated factors, but 1 mark only if one factor stated)

			[Total: 5]
	(iii)	gamma/γ	[1]
	(ii)	alpha/α	[1]
(b)	(i)	gamma/γ	[1]

10

BLANK PAGE

6