UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS
General Certificate of Education
Advanced Subsidiary Level

MAXIMUM MARK: $\mathbf{8 0}$

1 (a) 1.7%
(b) use of density $=$ mass $/$ volume $\left(=580 / 6^{3}\right)$
$=2.685 \mathrm{~g} \mathrm{~cm}^{-3} \ldots$ (allow 2.68, 2.69, 2.7)
$\%$ uncertainty in volume $=3 \times(0.1 / 6) \times 100=5.0 \%$
$\left(\rightarrow\right.$ uncertainty in density $=0.18 \mathrm{~g} \mathrm{~cm}^{-3}$)
density $=2.7 \pm 0.2 \mathrm{~g} \mathrm{~cm}^{-3}$
(e.c.f and answer $2.69 \pm 0.18 \mathrm{~g} \mathrm{~cm}^{-3}$ scores $3 / 4$ marks)
[Total: 5]

2 (a) ball moving in opposite direction (after collision)
(b) (i) change in momentum $=1.2(4.0+0.8)$
(correct values, 1 mark; correct sign \{values added\}, 1 mark)
$=5.76 \mathrm{~N} \mathrm{~s} .$. (allow 5.8)
(ii) force $=\Delta p / \Delta t$ or $m \Delta v / \Delta t$
$=5.76 / 0.08$ or $1.2 \times 4.8 / 0.08$
$=72 \mathrm{~N}$
(c) $5.76=3.6 \times v$
$v=1.6 \mathrm{~m} \mathrm{~s}^{-1}$
(d) (total) kinetic energy not conserved
[Total: 10]

3 (a) carbonates become more stable down the Group/higher decomposition temperature cation $/ \mathrm{M}^{2+}$ radius/size increases down the group $/ \mathrm{M}^{2+}$ charge density decreases
anion/carbonate ion/ $\mathrm{CO}_{3}{ }^{2-}$ suffers less polarisation/distortion
(b) (i) $\mathrm{Cu}=57.7 / 63.5=0.91$ correct ratios
$0=36.2 / 16=2.26$
$C=5.4 / 12=0.45$
$\mathrm{H}=0.9 / 1=0.90$ hence $\mathrm{Cu}_{2} \mathrm{O}_{5} \mathrm{CH}_{2}$
(ii) $\mathrm{Cu}^{2+}(\mathrm{aq})$ or $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right) 6\right]^{2+}$ NOT $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$
(iii) D is $\mathrm{CuO} /$ copper(II) oxide

$$
\begin{array}{ll}
\mathrm{Cu}_{2} \mathrm{O}_{5} \mathrm{CH}_{2} & \rightarrow 2 \mathrm{CuO}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}[1] \\
221 & \left.\rightarrow 159 \text { (both } \mathrm{M}_{\mathrm{r}} \mathrm{~s}\right) \\
\therefore 10 & \rightarrow 10 \times 159 / 221=7.2 \mathrm{~g}(7.19)
\end{array}
$$

(iv) E is copper; F is $\mathrm{Fe}^{2+} / \mathrm{Fe} \mathrm{SO} 4$
$\mathrm{Fe}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Cu}$ (or full equation)
(v) redox/displacement

4 (a) either phase difference is $\pi \mathrm{rad} / 180^{\circ}$
or path difference (between waves from S_{1} and S_{2}) is $1 / 2 \lambda$ or $(n+1 / 2) \lambda$
either same amplitude / intensity at M
or ratio of amplitudes is 1.28 / ratio of intensities is 1.28
(b) path difference between waves from S_{1} and $S_{2}=28 \mathrm{~cm}$
wavelength changes from 33 cm to 8.25 cm
minimum when $\lambda=(56 \mathrm{~cm}) 18.7 \mathrm{~cm},, 11.2 \mathrm{~cm},(8.0 \mathrm{~cm})$
so two minima
[Total: 6]

5 (a) (i) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ / pent-1-ene accept $\mathrm{C}_{3} \mathrm{H}_{7}$ on RHS
(ii) 8
(b) (i) e.g. $\mathrm{C}_{40} \mathrm{H}_{82} \rightarrow \mathrm{C}_{16} \mathrm{H}_{34}+2 \mathrm{C}_{12} \mathrm{H}_{24} \quad \mathrm{OR} \quad \mathrm{C}_{40} \mathrm{H}_{82} \rightarrow \mathrm{C}_{16} \mathrm{H}_{34}+\mathrm{C}_{24} \mathrm{H}_{48}$ etc
(ii) heat + catalysts $/ \mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Pt} /$ ceramic/pumice/zeolite etc. If temp given $>500^{\circ} \mathrm{C}$
(iii) bonds broken: $4(\mathrm{C}-\mathrm{C})=4 \times 350=1400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
bond formed: $2(\mathrm{C}=\mathrm{C})=2 \times 610=1220 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta H=+180 \mathrm{~kJ} \mathrm{~mol}^{-1}$
from eqn in (a)(i) : $+90 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for each $\mathrm{C}=\mathrm{C}$ formed (could be multiples of 90)
(iv) endothermic reactions $\Delta \mathrm{H}>0$

6 (a) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ exothermic
(b) pressure. 50 atm / $50000 \mathrm{~Pa} / \mathrm{N} \mathrm{m}^{-3}$ upwards;
temp $400-600^{\circ} \mathrm{C}$;
catalyst of iron
(1 mark for 2 correct; 2 marks for all 3 conditions correctly stated)
(c) too high a temp and equilibrium favours LHS, less ammonia at equilibrium
too low a temp, rate too slow/not enough molecules have E_{a}
(d) excess (hence uncontrolled) nitrates leach out of fields into streams, seas (1)
bacteria or algae grow fast/use oxygen/clog up water (1)
balance destroyed/fish unable to live (1) process called eutrification (1)

7 (a) (i) arrow in upward direction, foot near P
(ii) curved path, consistent with (i) between plates
then straight (with no kink at change-over)
(b) (i) $\mathrm{F}=\mathrm{Eq}$
$=5.0 \times 10^{4} \times 1.6 \times 10^{-19}$
$=8.0 \times 10^{-15} \mathrm{~N}$
(ii) $\mathrm{a}=\mathrm{F} / \mathrm{m}$
$=\left(8.0 \times 10^{-15}\right) /\left(9.1 \times 10^{-31}\right)$
$=8.8 \times 10^{15} \mathrm{~m} \mathrm{~s}^{-2}$

8 (a) use of either $P=V I$ and $V=I R$ or $P=V^{2} / R$
resistance $=38.4 \Omega$
(b) zero
1.5 kW
3.0 kW
0.75 kW
2.25 kW

9 (a) (i) orange ppt allow red to yellow/crystals or solid
(ii) ketone
(iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$ or butanone
(b) (i) NaBH_{4} allow $\mathrm{NaAlH}_{4}\left(\mathrm{Li} \mathrm{Al} \mathrm{H}_{4}\right)(1) \mathrm{H}_{2} / \mathrm{Ni}$ or Pt
(ii) secondary alcohol
(iii) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$

10 (a) (i) energy/enthalpy change when 1 mol of a compound is formed from its elements at $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ and $100 \mathrm{kP} / 1 \mathrm{~atm}$
(ii) $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \downarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
(b) (i) $\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
(ii) heat released $=m c \Delta T$
$=200 \times 4.2 \times 12.2=10.25 \mathrm{~kJ}$
(iii) $\Delta H=(-10.25) \div 1.00 / 40.1=-411 \mathrm{~kJ} \mathrm{~mol}^{-1}$ sign necessary for ecf, $\Delta H_{\text {reacn }}=40.1 \times$ [answer to (b)(ii)]
(iv) $V=n R T / P$
$=\frac{(1 / 40.1) \times 8.31 \times 300}{1 \times 10^{5}} \quad 6.22 \times 10^{-4} \mathrm{~m}^{3}$
allow ecf on error in moles of Ca in (b)(iii) and on error in equation in (b)(i)
[Total: 8]

11 (a) rate of decay/activity/decay (of nucleus) is not affected by external factors (If states specific factor(s), such as temperature/pressure/chemical bonding rather than giving general statement above, then give 2 marks for two stated factors, but 1 mark only if one factor stated)
(b) (i) gamma/r
(ii) alpha/ α
(iii) gamma/ γ
[Total: 5]

BLANK PAGE

