Cambridge
International
AS Level

PHYSICAL SCIENCE
8780/03
Paper 3 Structured Questions
MARK SCHEME
Maximum Mark: 80
\square

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Question	Answer	Marks
$1(\mathrm{a})(\mathrm{i})$	2	
1 (a)(ii)	4.2	1
$1(\mathrm{~b})$	$(\%$ uncertainty $=) 1.5+4.2+3.3 / 9.0$	1
	(actual uncertainty $=9 \times 20800 \div 100) 1872 / 1900$	1

Question	Answer	Marks
2(a)	iodine has more electrons than chlorine	1
	strong(er) induced dipole-induced dipole forces / van der Waals' forces (in iodine)	1
2(b)	increasing distance of (outer) electron(s) from nucleus OR increasing distance of outer/valence shell from nucleus OR increased shielding / screening (from inner shells)	1
	reduces attraction / decreasing nuclear attraction / weaker attraction between nucleus and (outer) electron(s)	1
2(c)	reagents: chlorine (water) + any solution containing I^{-}ions	1
	$\begin{array}{ll} \text { equation: } & \mathrm{Cl}_{2}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{-} \\ & \mathrm{Cl}_{2}+2 \mathrm{NaI} \rightarrow \mathrm{I}_{2}+2 \mathrm{NaCl} \\ & \mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow \mathrm{I}_{2}+2 \mathrm{KCl} \end{array}$	1
	observation: formation of a red solution / dark grey brown / black solution or ppt	1

Question	Answer	Marks
3(a)	(work =) force \times displacement / distance in the direction of the force	1
3(b)(i)	$2.84 / 2.835$ (J)	1
3(b)(ii)	2.84 (J)	1
3(c)(i)	600	1
	$\mathrm{W} / \mathrm{Js}^{-1}$	1
3(c)(ii)	(\% power falling on panels converted input power $=1400 \times 10 / 100=$) $140\left(\mathrm{Wm}^{-2}\right)$	1
	(power converted to useful power output =) $140 \times 24 / 100 / 33.6$	1
	$($ area $=600 / 33.6=) 17.8\left(\mathrm{~m}^{2}\right)$	1

Question	Answer	Marks
4(a)(i)	2-bromo-2-methylpropane	1
4(a)(ii)	$\mathrm{Br}_{2} \rightarrow 2 \mathrm{Br} \bullet$	1
4(a)(iii)	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}+\mathrm{Br} \bullet \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \bullet+\mathrm{HBr}$	1
	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \bullet+\mathrm{Br}_{2} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{Br} \bullet$	1
4(a)(iv)		1

Question	Answer	Marks
$4(\mathrm{a})(\mathrm{v})$	$2\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \bullet \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC}\left(\mathrm{CH}_{3}\right)_{3}$	
	OR	
$2\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \bullet \rightarrow \mathrm{C}_{8} \mathrm{H}_{18} /$ eqv	1	
$4(\mathrm{~b})$	$\mathbf{P} \quad$ ammonia $/ \mathrm{NH}_{3}$	$\mathbf{1}$
	$\mathbf{Q}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNH}_{2}$	$\mathbf{1}$

Question	Answer	Marks
$5(a)$	$($ momentum $=)$ mass \times velocity	
$5(\mathrm{~b})$	$($ momentum before collision $=) 0.5 \times 4.0 / 2(.0)$	1
	$($ momentum after collision $=)[0.75 \times 3.2]+\left[0.5 \times v_{A}\right]$ OR $2.4+\left[0.5 \times v_{A}\right]$	1
	$\left(V_{\mathrm{A}}=\right)-0.8\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	1
	$\left(E_{\mathrm{k}}\right.$ before collision $\left.=\right) 1 / 2 \times 0.5 \times 4^{2}=4(\mathrm{~J})$	1
	$\left(E_{\mathrm{k}}\right.$ after collision $\left.\left.=\right) 1 / 2 \times 0.5 \times(-0.8)^{2}+1 / 2 \times 0.75 \times 3.2^{2}\right)=4 \mathrm{~J}$ OR $0.16+3.84=4 \mathrm{~J}$ AND so elastic	1

Question	Answer	Marks
6(a)(i)	effect on rate: rate increases AND effect on yield yield decreases	1
	rate explanation: (at higher temperature) more molecules / particles have $\mathrm{E} \geqslant \mathrm{E}_{\mathrm{a}}$	1
	more / a higher frequency of collisions are successful	1
	yield explanation: as (forward) reaction is exothermic	1
6(a)(ii)	at $450^{\circ} \mathrm{C}$ the rate is not too slow AND the yield is not too low OR above $450^{\circ} \mathrm{C}$ yield too low AND below $450^{\circ} \mathrm{C}$ rate too slow	1
6(b)	$\Delta H_{\mathrm{R}}=\Sigma((-795.8)+2(-285.8)+2(-45.9))-\Sigma(2(-314.6)+(-986.1))$	1
	$=(+) 156.1 / 156$	1
6(c)(i)	hydrogen bonding	1
6(c)(ii)	high electronegativity difference (in both molecules)	1

Question	Answer	Marks
$7(\mathrm{a})($ (i)	(monochromatic light is) light of a single frequency/wavelength	
7 (a)(ii)	(coherent sources produce beams of light that have a) constant phase difference between them	
7 (b)(i)	fringes are closer (together)	1
7 (b)(ii)	(violet) light has shorter wavelength	1
	smaller path difference required for the same phase difference	$\mathbf{1}$
7 (c)	(double) slits closer to each other	$\mathbf{1}$
	screen further away (from the double slits)	$\mathbf{1}$

Question	Answer	Marks
8(a)	$\mathrm{n}\left(\mathrm{HNO}_{3}\right) \quad=175 \times 10^{-3} \times 1.5=0.2625(\mathrm{~mol})$	1
	$\mathrm{n}\left(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}\right) \quad=1 / 2 \times 0.2625=0.131(\mathrm{~mol})$	1
	Mass $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=148.3 \times 0.131=19.4 / 19.46 / 19.5$ (g)	1
8(b)(i)	describes the formation of a brown gas OR describes the relighting of a glowing splint	1
8(b)(ii)	$\mathrm{nMg}\left(\mathrm{NO}_{3}\right)_{2}=3.47 / 148.3=0.0234(\mathrm{~mol})$	1
	n (gas) $\quad=5 / 2 \times 0.0234=0.0585(\mathrm{~mol})$	1
8(b)(iii)	$(V=n R T / P=) \frac{0.211 \times 8.31 \times 298}{100000}$	1
	$=5.2(3) \times 10^{-3}\left(\mathrm{~m}^{3}\right)$	1

Question	Answer	Marks
9 (a)	current is proportional to potential difference	$\mathbf{1}$
$9(\mathrm{~b})$	the temperature (of the filament) increases	$\mathbf{1}$
	resistance increases	$\mathbf{1}$
9 (c)(i)	diode	$\mathbf{1}$
	current is in one direction only	$\mathbf{1}$
$9(\mathrm{c})$ (ii)	first quadrant characteristic of lamp	$\mathbf{1}$
	third quadrant characteristic of diode	$\mathbf{1}$

Question	Answer	Marks
10(a)(i)	$3 \mathrm{CuS}(\mathrm{s})+8 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow 3 \mathrm{CuSO}_{4}(\mathrm{aq})+8 \mathrm{NO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	1
10(a)(ii)	element reduced: nitrogen / N	1
	explanation: oxidation number of N goes from +5 to +2	1
10(b)(i)	$1 s^{2} \quad 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1} / 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10}$	1
	$1 s^{2} \quad 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}$	1
10(b)(ii)	$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$	1
10(b)(iii)	diagram shows a regular lattice of circles, each with a +ve charge / Cu^{2+} AND negative charge or electrons;	1
	explanation attraction between positive ions and delocalised electrons	1

Question	Answer	
$11(\mathrm{a})(\mathrm{i})$	$I_{1}-I_{2}-I_{3}=0$	$\mathbf{1}$
$11(\mathrm{a})(\mathrm{ii})$	$E-I_{3} R_{\mathrm{v}}-I_{1} R_{2}=0$	$\mathbf{1}$
$11(\mathrm{a})(\mathrm{iii})$	$I_{2} R_{1}-I_{3} R_{\mathrm{v}}=0$	$\mathbf{1}$
$11(\mathrm{~b})$	reading will decrease	$\mathbf{1}$
	more current through R_{2}, therefore larger potential difference across it	$\mathbf{1}$

Question	Answer	Marks
12	unchanged any one from: positive or small nucleus nucleus containing most of mass (of atom) electrons surround or outside of nucleus	$\mathbf{1}$
	changed any two from: (Rutherford electrons in any orbit) Bohr electrons in (fixed) orbit(als) (Rutherford electrons or orbits have any energy) Bohr electrons or orbit(als) have discrete energies Bohr electrons orbit at fixed distance from nucleus Bohr electrons orbit without emitting radiation Bohr electrons gain or lose energy by moving between orbitals	$\mathbf{2}$

