MNN. Xiremedabers.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level

MARK SCHEME for the October/November 2013 series

8780 PHYSICAL SCIENCE

8780/03

Paper 3 (Structured Questions), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		Mark Scheme		Syllabus	Paper
		GCE AS LEVEL	- October/November 2013	8780	03
(a)	A : Sr (O B : SrSO C : Sr(NO) ₄			
		correct for one mark correct for two marks			[2
(b)	(i) stro	ng heating			[1
	(ii) SrC	$SO_3 \rightarrow SrO + CO_2$			[1
(c)	(i) simp	plest whole-number ra	tio of atoms of each element pre	esent in the compo	und [1
	(ii) percentage Sr = (100 – 26.76) = 73.24%				
	Sr 73.: 87	<u>24</u> <u>26.76</u>			[1
	0.83 1		SrO ₂		[1
	(iii) H ₂ O)2			[1
					[Total: 8
(a)	the veloc	-	posite direction to original veloci	ty/velocity $v_{\rm A1}$ befo	re [1
(b)	<i>m</i> _A <i>v</i> _{A1} (+ 0.123 (m		₃₂ in symbols, words or numbers		[1 [1
(c)	$\overline{E_k}$ before		energy <u>and</u> use of KE = $\frac{1}{2} mv^2$ E_k after = 4.94×10^{-3} J (e.c.f from re > E_k after (e.c.f)	n (b))	[1 [1 [1
	consider speed of	f approach = 0.3 (m s ⁻	speed of separation and eviden), speed of separation = 0.16 + of of approach > speed of separation	0.123 = 0.283 (m s)	⁻¹) (1 (1
					[Total: 6
	•		₁₀ react with water, (so cannot bed by reaction with water will the	•	, <u>-</u>
P_4^- C	$O_{10} + \bar{6}H_2$	\rightarrow 2KOH $_{2}O \rightarrow$ 4H $_{3}PO_{4}$ $(OH \rightarrow K_{3}PO_{4} + 3H_{2})$			[1 [1 [1

[Total: 5]

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – October/November 2013	8780	03

4 (a) the resultant force (in any direction) on the beam is zero [1] the resultant moment on the beam/about any point is zero [1]

(accept the <u>sum</u> of the clockwise moments = the <u>sum</u> of the anticlockwise moments)

(b) (i) (ii) vector diagram drawn with one side 3.9 cm in correct direction [1] triangle completed correctly and correct arrows [1]

triangle completed correctly <u>and</u> correct arrows [1] force $H = 77.5 \pm 2.5$ (N)

[Total: 5]

- 5 (a) when two (or more waves meet at a point) the resultant displacement is the sum of the two individual displacements [1]
 - (b) (i) the amplitude of the trace (on the c.r.o.) would go from maximum to minimum (several times) (o.w.t.t.e) [1]
 - (ii) 1. maxima and minima would be closer together (accept wavelengths on the screen are shorter) [1]
 - 2. amplitude of the trace increases [1]
 - (c) to prevent (destructive) interference (o.w.t.t.e) [1] the transmissions are not coherent **or** which would cause some places to have (very) poor reception (signal) [1]

[Total: 6]

- 6 (a) (i) anode = impure copper [1] cathode = pure copper [1] electrolyte = $CuSO_4 / Cu(NO_3)_2$ not $CuCl_2$ or just $Cu^{2+}(aq)$ [1]
 - (ii) anode = $Cu \rightarrow Cu^{2+} + 2e^{-} \underline{and}$ cathode = $Cu^{2+} + 2e^{-} \rightarrow Cu$ [1]
 - (iii) anode sludge/lime [1]
 - (b) when NaCl is added the [C l^-] increases [1] when water is added the [C l^-] decreases as [C l^-] increases equilibrium moves right / as [C l^-] decreases equilibrium moves left to restore equilibrium / to reduce or increase [C l^-] (as appropriate) [1]

responses should be given credit if they include the identification of changes to chloride ion concentration due to the additions of salt and water, the effects this has on the equilibrium position and a realistic Le Chatelier-based explanation

[Total: 9]

	Page 4		Mark Scheme	Syllabus	Paper	
			GCE AS LEVEL – October/November 2013	8780	03	
7	(a) (i)		of $a = \Delta v / \Delta t$ or acceleration = gradient (= $16 \times 10^6 / 3 \times 10^{15}$ (m s ⁻²)	3.5 × 10 ⁻⁹)	[1] [1]	
	(ii) <u>use</u> of $F = ma = 9.11 \times 10^{-31} \times 4.6 \times 10^{-15}$) (must use 9.11×10^{-31} kg) e.c.f from (4.2×10^{-15} (N) or 4.1×10^{-15} (N)					
	(b) steeper slope with electron emerging <u>earlier</u> with higher final speed					
	(c) <u>use</u> of $E = F/q = (5.0 \times 10^{-15} / 1.6 \times 10^{-19})$ $3.1 \times 10^4 (NC^{-1})$					
					[Total: 8]	
8	(a) (i)	(2-) ı	methylpropan-1-ol or appropriate structural formula		[1]	
	(ii)	elimi	ination/dehydration		[1]	
	(iii)	hydr	ogen bromide/HBr		[1]	
	` ,		(-2-)methylpropane nsposition of substituents but <u>not</u> 2-bromo-		[1]	
	(c) (i)	(p-)a	amine		[1]	
	(ii)	curly	v arrow from lone pair of N to C joined to Br v arrow from C–Br bond to Br atom ect intermediate showing positive charge on N atom v arrow showing deprotonation		[1] [1] [1] [1]	

[Total: 9]

Page 5		Mark Scheme	Syllabus	Paper
		GCE AS LEVEL – October/November 2013	8780	03
(a) wo	ork dor	ne/energy transferred per unit charge		[
(b) 15	50 (Ω)			[
(c) (i)	<u>use</u>	of $V = IR$ to show $I = 6.0/400$		[
(ii)	zero	(V) and correct reasoning using V = IR		[
(iii)	pd a	stance of thermistor = 600 (Ω) cross thermistor = $\frac{3}{4} \times 6$ V = 4.5 V or evaluation of tota of $V = IR$ to find I (= 7.5×10^{-3} A compared with 1.5 × there		[chhoff [
(iv)		ence of using Kirchhoff for loop CAD		ו]]
	·			[Total:
(a) (i)) Δ <i>H</i> =	= Σ (bonds broken) – Σ (bonds formed) or		[
	cycle	e $(4 \times 390 + 160 \times 2 \times 150 + 4 \times 460) - [994 + (8 \times 460)]$ 4 (kJ mol ⁻¹) <i>minus sign required</i>	0)]	I
(ii)	oxid N is oxid	reduced ation number of O goes from -1 to -2 oxidised ation of N goes from -2 to zero rd two marks for four points rd one mark for any two or three points		[
(b) (i)	3N₂l 4NH 4N₂l cand	ations added together $H_4 \rightarrow 4NH_3 + N_2$ $H_3 + N_2H_4 \rightarrow 3N_2 + 8H_2$ $H_4 + 4NH_3 + 4N_2 + 4NH_3 + 8H_2$ $H_4 + 4NH_3 + 4N_3 + 8H_3$ $H_4 + 4NH_3 + 4N_3 + 8H_3$ $H_5 + 4N_5 + 4N_5 + 8N_5 +$		[
	only	allow this mark if the reasoning is clear and unambigu	ious	
(ii)	n(ga	$H_4 = 400/32 = 12.5$ (s) = $3 \times 12.5 = 37.5$ $37.5 \times 8.31 \times 950$]]]
	P =	0.025 11842 (kPa)		

Mark Scheme

Syllabus

Paper

[Total: 9]

Page 5

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – October/November 2013	8780	03

11 (a) any four from:

[4]

 $\alpha\text{-particles}$ at gold foil thin (gold foil) detector moved to different angles / vacuum / foil most un-deviated / little deviation a few scattered through large angles / > 90°

(b) (i) like charges repel, so large deflections show nucleus must have same charge as alpha (o.w.t.t.e)

[1]

- or argument based on conservation of momentum for large deflectionsor large angle deflection means mass/positive charge is not distributed throughout
- (ii) $\underline{\text{most}} \alpha$ -particles were un-deviated / $\underline{\text{very}}$ few scattered through large angles, (hence cross-section of nucleus is very small) [1]

[Total: 6]