CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level

MARK SCHEME for the October/November 2012 series

8780 PHYSICAL SCIENCE

8780/03

Paper 3 (AS Structured Questions), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2			Mark Scheme	Syllabus	Paper	
				GCE AS LEVEL – October/November 2012	8780	03	
1	(a)	Molecules/particles of gas collide with the walls of the cylinder			(1)		
		leads to change in momentum (of particle) rate of change of momentum = force Many collisions leads to force over the whole wall / the collisions cause a force					
		(hence pressure) on the walls.					[3]
	(b)			e between collisions is reduced therefore) more collisior quent collisions (Any mention of increased speed of mol		(1)	[1]
2	(a)			is = number/proportion/percentage of molecules (with a is = energy/ <i>KE</i> (NOT speed)	given energy)	(1)	
			prop to re	ortion/percentage/number of molecules with $E \ge E_A$ /e act	enough energy	(1)	
	(starts at origin; mode lower and shifted to the right; doen nptotic to the <i>x</i> -axis	es not touch/is	(1)	
	(b)			crease in shaded area/number of molecules with $E \ge$ in temperature)	E_a (for a small	(1)	[1]
3	(a)			ny readings <u>and</u> average either at right angles or along the length of the wire/igno	ore anomalous	(1) (1)	[2]
	(b)	unce	ertain	ge uncertainty in $d = (0.01/0.14) \times 100 = 7.1 \%$ (ac ity throughout)	cept fractional	(1)	
		abso	olute	age uncertainty in A =7.1 × 2 =14.2) uncertainty in A = (0.015 × 14.2)/100 = 2(.1) mm '% etc.)		(1)	[2]
4	(a)	21.7	′ × 10	$0^{-3} \times 0.150 = 3.255 \times 10^{-3}$ (mol)		(1)	
	(b)	(i)	Mole Mole	es of H ₂ X in 25.0 cm ³ = $(3.255 \times 10^{-3})/2 = 1.63 \times 10^{-3}$ (m es of H ₂ X in 250 cm ³ = 1.63 × 10 ⁻² (mol)	ol)	(1) (1)	
	(c)	<i>M</i> r o	f H₂X	K = 1.92 / 1.63 × 10 ⁻² = 117.9 = 118		(1)	[4]
5	(a)	(i)	V = '	$1.3 \times 2.5 = 3.25 \text{ V}$ (accept 3.1 to 3.5)		(1)	[0]

Page 3		3	Mark Scheme	Syllabus	Paper		
			GCE AS LEVEL – October/November 2012	8780	03		
	(b) (i)	Amp	litude doubled, frequency unchanged		(1)		
	(ii)		zero amplitude				
		men scor	tion of addition or subtraction (accept cancel for (tion of constructive/destructive interference of signals e this mark at least one of the marks in (i) or (ii) must ear the amplitude increased in (i) / decreased in (ii)]	in (i) or (ii) [to	(1)	[3]	
6	(a) (i)		(<i>mc</i> ⊿T) = 100 × <u>4.18</u> × <u>12.5</u>		(1)		
		= 52	25 J allow 5.225 kJ if units changed by candidate		(1)	[2]	
	(ii)	nCH	$_{3}$ CH ₂ CH ₂ OH = 0.341/60 = 5.68 × 10 ⁻³ (mol)		(1)	[1]	
	(iii)	enth	alpy change of combustion = -919kJ mol ⁻¹ penalise '+'	or missing '–'	(1)	[1]	
	(b) (i)		ce of error = heat loss to surroundings/loss of propan-1- v incomplete combustion/non-use of heat capacity of ap	• •	(1)		
	(ii)	Con	vincingly explains why ∆ <i>H</i> or heat energy value/ q would	be (much) too low	v (1)	[2]	
7	(a) Al ₂ :	Se ₃	+ 6 H ₂ O \rightarrow 2 A <i>l</i> (OH) ₃ + 3 H ₂ Se		(1)	[1]	

(b) (i) $H_2Se =$ 'bent' shape with 2 lone pairs – based on tetrahedral

(1)

(ii) NH₃ = pyramidal shape with 1 lone pair

(1)

NOT dot-and-cross diagrams but allow [1] if **both** diagrams show the correct numbers of lone pairs If lone pairs are missing from both diagrams, allow [1] if **both** shapes are correct.

	Page 4		Mark Scheme	Syllabus	Paper		
			GCE AS LEVEL – October/November 2012	8780	03		
	pairs Lone		has 2 lone pairs but N has only 1 lone pair /allow Se has more lone irs than N ne pairs repel more strongly than bonding pairs / etc. reference to pulsion of atoms negates		(1) (1)	[4]	
8	pr ne 14 7	otons l eutron N+ ¹ ₀ n	are different forms of the same element with the same r but different numbers of neutrons (accept proton/atomic number) $\rightarrow \frac{^{14}}{^{6}}C + \frac{1}{^{1}}p$ ols correct (accept H)		(1) (1)	[2]	
	. ,		ers correct case: accept ${}^{15}_{7}N \rightarrow {}^{14}_{6}C + {}^{1}_{1}p$ for 1mark)		(1) (1)	[2]	
) co	orrect p	position mother nuclide correctly labelled position daughter nuclide correctly labelled poth correctly positioned and clear indication for 1 max)		(1) (1)	[2]	
9	aı ar	(a) Cross (X) is positioned where 1 goes flat i.e. where 4 joins 1 and student explains that after X, NH ₃ formed/destroyed at same rate/R _f = R _b or amount/concentration of NH ₃ constant at equilibrium. Do NOT allow line goes flat/ NH ₃ not formed any more					
	(b) (i) incre	eased pressure = 3 increased temperature = 2		(1)		
	(ii	fewe	ain that pressure favours side with fewer moles (depender moles on right / there is a 2:1 mole ratio L:R/equilibrium t/more NH_3 formed		(1) (1)		
	(iii		lyst increases rate and does not change equilibrium pos ease equally	ition/rates	(1)	[4]	
10	(a) (i		0.142 × 53.0 53 kg m s ^{−1} (N s or kgms ^{−1})		(1) (1)	[2]	
	(ii) F=	∆ <i>p</i> /∆ <i>t</i> =7.53 / 0.451 = 167N		(1)	[1]	
	(b) E	_k = ½ n	$nv^2 = \frac{1}{2} \text{ xo. } 142 \times 53^2 = 199 \text{ J}$		(1)	[1]	
	(c) (i		r mention of friction /drag/resistance <u>/ork is done</u> against frictional force		(1) (1)	[2]	
	(ii		tic energy is converted to internal (heat/thermal) energy oundings	of the ball and/o	r (1)	[1]	

Page 5		5	Mark Scheme Syllabus		per
			GCE AS LEVEL – October/November 2012 8780		3
11	(a) (i)	Para	allel vertical lines arrows downwards (minimum 2)	(*	1) [1]
	(ii)	E = = 80	<i>V/d</i> = 400/ 5 (× 10 ⁻²) 000 V m ⁻¹ or N C ⁻¹ accept 80 V cm ⁻¹ or N C ⁻¹		1) 1) [2]
	(b) CI	ear pa	rabolic shape towards the positive plate	(*	1) [1]
	(c) (i)	Incr	eases (uniformly)	(*	1)
	(ii)	uncl	hanged	(*	1) [2]
12	(a) (i)	2-br	omo-3-methylbutane allow variants such as 3-bromo-2-methyl	butane (*	1)
	(ii)	elim	ination	(*	1)
	(iii)	sodi	ium/potassium hydroxide and dissolved in alcohol	(*	1)
	(iv)		н н		
			$H > C = C < H_{CH(CH_3)_2}$	(*	1)
	(v)		as the right hand C in the C=C bond has two CH_3 /the same gro ched to it.	•	1) [5]
	(b)				
			$\begin{array}{cccc} & & H \\ & & & \\ CH_3 & C & -CH(CH_3)_2 \\ & & & \\ CN^- & & & CN \\ & & & CN \\ & & & & (Br^-) \end{array}$		
			ows correctly positioned	(*	1) 1) [2]

correct structure for nitrile

(1) [2]

[1]

(1)

- 13 (a) Quantity with magnitude and direction
 - (b) (i) Arrow vertically down and arrow along the string, all 3 arrows go through a single point (by eye) (1) [1]
 - (ii) $0.510 \times 9.81 = 5.0(0) N$ (1) [1]
 - (iii) triangle with correct directions (45,90,45), with at least one force labelled (1) arrows correct (1) $T = 35 \pm 1 \text{ N}$ (1) [3]

	Page 6	Mark Scheme	Syllabus	Paper	
		GCE AS LEVEL – October/November 2012	8780	03	
(c)		acceleration = 4.7 m s ⁻¹ ine on graph		(1) (1)	[2]
14	brown = relights residue			(1)	[2]
		ium/Group I/Group II nitrate accept strontium nitrate/lithe $a(NO_3)_2 \rightarrow 2BaO + 4NO_2 + O_2$ allow ecf on error in nitrate		(1) (1)	[2]
15	electroly A l^{3^+} + 3 it is exp	ed in molten cryolite/cryolite lowers melting point of mixturs resis using carbon/graphite electrodes $e^- \rightarrow Al$ ensive (to extract) due to the cost of the large amount of high current used		(1) (1) (1) / (1)	[4]
	conserv save en reduces reduces	e advantage from: es resources ergy mining/landfill pollution – developed need for transport - developed		(1)	[1]