MARK SCHEME for the October/November 2012 series

8780 PHYSICAL SCIENCE

8780/03
Paper 3 (AS Structured Questions), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - October/November 2012	$\mathbf{8 7 8 0}$	$\mathbf{0 3}$

1 (a) Molecules/particles of gas collide with the walls of the cylinder
leads to change in momentum (of particle) rate of change of momentum = force Many collisions leads to force over the whole wall / the collisions cause a force (hence pressure) on the walls.
(b) (Distance between collisions is reduced therefore) more collision per unit time/ more frequent collisions (Any mention of increased speed of molecules 0/1)

2 (a) (i) y-axis = number/proportion/percentage of molecules (with a given energy) x-axis $=$ energy $/ K E$ (NOT speed)
(ii) proportion/percentage/number of molecules with $E \geqslant E_{A}$ /enough energy to react
(iii) Line starts at origin; mode lower and shifted to the right; does not touch/is asymptotic to the x-axis
(b) (large) increase in shaded area/number of molecules with $E \geqslant E_{a}$ (for a small increase in temperature)

3 (a) take many readings and average
readings either at right angles or along the length of the wire/ignore anomalous
(b) percentage uncertainty in $d=(0.01 / 0.14) \times 100=7.1 \%$ (accept fractional uncertainty throughout)
(percentage uncertainty in $A=7.1 \times 2=14.2$)
absolute uncertainty in $A=(0.015 \times 14.2) / 100=2(.1) \mathrm{mm}$
(accept 7\% etc.)
[2]

4 (a) $21.7 \times 10^{-3} \times 0.150=3.255 \times 10^{-3}(\mathrm{~mol})$
(b) (i) Moles of $\mathrm{H}_{2} \mathrm{X}$ in $25.0 \mathrm{~cm}^{3}=\left(3.255 \times 10^{-3}\right) / 2=1.63 \times 10^{-3}(\mathrm{~mol})$

Moles of $\mathrm{H}_{2} \mathrm{X}$ in $250 \mathrm{~cm}^{3}=1.63 \times 10^{-2}(\mathrm{~mol})$
(c) M_{r} of $\mathrm{H}_{2} \mathrm{X}=1.92 / 1.63 \times 10^{-2}=117.9=118$
[4]

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - October/November 2012	8780	03

(b) (i) Amplitude doubled, frequency unchanged
(ii) zero amplitude
mention of addition or subtraction (accept cancel for (ii)) or correct mention of constructive/destructive interference of signals in (i) or (ii) [to score this mark at least one of the marks in (i) or (ii) must be scored or it is clear the amplitude increased in (i) / decreased in (ii)]

6
(a) (i) $Q=(m c \Delta T)=100 \times 4.18 \times 12.5$
$=5225 \mathrm{~J}$ allow 5.225 kJ if units changed by candidate
(ii) $\mathrm{nCH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}=0.341 / 60=5.68 \times 10^{-3}(\mathrm{~mol})$
(iii) enthalpy change of combustion $=-919 \mathrm{~kJ} \mathrm{~mol}^{-1}$ penalise ' + ' or missing ${ }^{~}-$ '
(b) (i) source of error = heat loss to surroundings/loss of propan-1-ol by evaporation allow incomplete combustion/non-use of heat capacity of apparatus
(ii) Convincingly explains why ΔH or heat energy value/q would be (much) too low

7 (a) $\mathrm{Al}_{2} \mathrm{Se}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{Se}$
(b) (i) $\mathrm{H}_{2} \mathrm{Se}=$ 'bent' shape with 2 lone pairs - based on tetrahedral

(ii) $\mathrm{NH}_{3}=$ pyramidal shape with 1 lone pair

NOT dot-and-cross diagrams but allow [1] if both diagrams show the correct numbers of lone pairs
If lone pairs are missing from both diagrams, allow [1] if both shapes are correct.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - October/November 2012	$\mathbf{8 7 8 0}$	$\mathbf{0 3}$

(iii) Se has 2 lone pairs but N has only 1 lone pair /allow Se has more lone pairs than N
Lone pairs repel more strongly than bonding pairs / etc. reference to repulsion of atoms negates

8 (a) Isotopes are different forms of the same element with the same number of protons but different numbers of neutrons (accept proton/atomic number, neutron number)
${ }_{7}^{14} \mathrm{~N}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{6}^{14} \mathrm{C}+{ }_{1}^{1} \mathrm{p}$
all symbols correct (accept H)
(b) all numbers correct
(special case: accept ${ }_{7}^{15} \mathrm{~N} \rightarrow{ }_{6}^{14} \mathrm{C}+{ }_{1}^{1}$ p for 1 mark)
(c) correct position mother nuclide correctly labelled
correct position daughter nuclide correctly labelled
(accept both correctly positioned and clear indication for 1 max)

9 (a) Cross (\mathbf{X}) is positioned where 1 goes flat i.e. where 4 joins 1
and student explains that after $\mathbf{X}, \mathrm{NH}_{3}$ formed/destroyed at same rate $/ R_{\mathrm{f}}=R_{\mathrm{b}}$ or amount/concentration of NH_{3} constant at equilibrium.
Do NOT allow line goes flat/ NH_{3} not formed any more
(b) (i) increased pressure $=\mathbf{3}$ increased temperature $=\mathbf{2}$
(ii) explain that pressure favours side with fewer moles (dependent on b(i))
fewer moles on right / there is a $2: 1$ mole ratio $\mathrm{L}: \mathrm{R} /$ equilibrium moves right/more NH_{3} formed
(iii) catalyst increases rate and does not change equilibrium position/rates increase equally

10 (a) (i) $p=0.142 \times 53.0$
$=7.53 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\left({\left.\mathrm{~N} \mathrm{~s} \text { or } \mathrm{kgms}^{-1}\right)}^{-1}\right.$
(ii) $F=\Delta p / \Delta t=7.53 / 0.451=167 \mathrm{~N}$
(ii) kinetic energy is converted to internal (heat/thermal) energy of the ball and/or surroundings

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS LEVEL - October/November 2012	8780	03

11 (a) (i) Parallel vertical lines arrows downwards (minimum 2)
(ii) $E=V / d=400 / 5\left(\times 10^{-2}\right)$
$=8000 \mathrm{Vm}^{-1}$ or NC^{-1} accept $80 \mathrm{~V} \mathrm{~cm}^{-1}$ or NC^{-1}
(b) Clear parabolic shape towards the positive plate
(c) (i) Increases (uniformly)
(ii) unchanged

12 (a) (i) 2-bromo-3-methylbutane allow variants such as 3-bromo-2-methylbutane
(ii) elimination
(iii) sodium/potassium hydroxide and dissolved in alcohol
(iv)

(v) No, as the right hand C in the $\mathrm{C}=\mathrm{C}$ bond has two $\mathrm{CH}_{3} /$ the same groups attached to it.
(b)

both arrows correctly positioned
correct structure for nitrile

13 (a) Quantity with magnitude and direction
(b) (i) Arrow vertically down and arrow along the string, all 3 arrows go through a single point (by eye)
(ii) $0.510 \times 9.81=5.0(0) \mathrm{N}$
(iii) triangle with correct directions $(45,90,45)$, with at least one force labelled

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - October/November 2012	8780	03

(c) Evidence of acceleration $=4.7 \mathrm{~m} \mathrm{~s}^{-1}$
correct line on graph

14 (a) Any two from:
brown $=\mathrm{NO}_{2}$
relights spill $=\mathrm{O}_{2}$
residue is Group II/metal oxide
forms (soluble) Group II/metal hydroxide in water
(1) [2]
(b) (i) Barium/Group I/Group II nitrate accept strontium nitrate/lithium nitrate
(ii) $2 \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{BaO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ allow ecf on error in nitrate

15 (a) dissolved in molten cryolite/cryolite lowers melting point of mixture electrolysis using carbon/graphite electrodes
$\mathrm{A} l^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{A} l$
it is expensive (to extract) due to the cost of the large amount of electricity/energy needed/high current used
(b) Any one advantage from:
conserves resources
save energy
reduces mining/landfill
reduces pollution - developed
reduces need for transport - developed

