CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level

MARK SCHEME for the October/November 2012 series

8780 PHYSICAL SCIENCE

8780/02

Paper 2 (Short Response Questions), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2	Mark Scheme	Syllabus	Paper
		GCE AS LEVEL – October/November 2012	8780	02
1	newton = kg <i>k =F/rv</i> ²→ kg	m s ⁻² g m s ⁻² / m m ² s ² = kg m ⁻²		[1] [1]
				[Total: 2]
2	(a) velocity	changes direction hence acceleration and force required	1	[1]
	(b) horizont circle.	al from anywhere on the body of the female skater point	ing towards the	e centre of the [1]
				[Total: 2]
3	A <i>l</i> loses an e The electron by (3)s ² elec	electron in its (3)p orbital/sub-level, Mg loses a (3)s elect i in the 3(p) is higher energy/further from nucleus than (3 trons	ron)s) or is shielde	[1] ed [1]
				[Total: 2]
4	1s ² 2s ² 2p ⁶ 3s ²	² 3p ⁶ 3d ⁷		[1]
				[Total: 1]
5	(a) a specie	es which gains electrons (in a reaction)		[1]
	(b) (i) Any	one from:		
	2Br 2Br 2Na	$\begin{array}{l} \overline{}^{-}+\mathrm{SO_4}^{2-}+\mathrm{4H}^{+}\rightarrow\mathrm{SO_2}+\mathrm{2H_2O}+\mathrm{Br_2}\\ \overline{}^{-}+\mathrm{H_2SO_4}+\mathrm{2H}^{+}\rightarrow\mathrm{SO_2}+\mathrm{2H_2O}+\mathrm{Br_2}\\ \mathrm{aBr}+\mathrm{2H_2SO_4}\rightarrow\mathrm{SO_2}+\mathrm{2H_2O}+\mathrm{Br_2}+\mathrm{Na_2SO_4} \end{array}$		
	2HE	$3r + H_2SO_4 \rightarrow SO_2 + 2H_2O + Br_2$		[1]
	(ii) Br ⁻	ions/HBr molecules (lose electrons to form Br_2 or Br_2 + H	l₂O)	[1]
				[Total: 3]
6	Torque of a the two force	couple = product of one of the forces and the <u>perpendicu</u> es.	<u>ılar distance be</u>	etween [1]
				[Total: 1]
7	Use of either	$v = \lambda \times 1/T$ or $v = s/t$ = 17(1) m s ⁻¹		[1]
		- 17(.1)11.5		
				[10tal: 2]

8 (a) breaking large/long molecules into shorter/smaller molecules
the smaller molecules are more useful/valuable than the long molecules [1]

	Page	3	Mark Scheme	Syllabus	Paper
			GCE AS LEVEL – October/November 2012	8780	02
	(b) $C_{18}H_{38} \rightarrow 2C_2H_4 + C_3H_6 + C_{11}H_{24}$ or $C_{18}H_{38} \rightarrow 4C_2H_4 + 2C_3H_6 + C_4H_{10}$				
	co eq	rrect fo	ormulae for ethene and propene fully correct		[1] [1]
					[Total: 3]
9	<u>(188 ×</u>	<u>1.5) +</u>	<u>(189 × 2.5) + (190 × 3.0) + (192 × 4.5)</u> = 190.3 11.5		
	correct fully co	t nume prrect	rator		[1] [1]
					[Total: 2]
10	(a) Fir	nd p.d.	and read current from graph, $R = V/I$		[1]
	(b) the	ermisto	or/ semiconductor, resistance decreases as V increases.		[1]
					[Total: 2]
11	Potential difference is energy per unit charge Work done or energy transferred by the charge in going round a closed loop = energy			[1]	
	given t	o it (by	the source of emf)	sa loop shory,	[1]
					[Total: 2]
12	(a) HF	= has (strong) hydrogen bonding		[1]
	(b) HC	C <i>l</i> to Hi	I have van der Waals' forces (between molecules) Naals' forces increase in strength with increase in numb	er of electrons fr	[1] om
	HC	Cl to H	I.		[1]
					[Total: 3]

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – October/November 2012	8780	02

13 correct spherical 's' and correct 'dumbbell 'p'

х

	do not accept diagrams with multiple shapes on one set of axes	[1]
		[Total: 1]
14	Any orbits allowed in Rutherford model, only allowed orbitals in Bohr model (allow or shells) No rules for electron numbers in Rutherford model, fixed numbers of electrons in eac Bohr orbital	[·] bits/ [1] ch [1] [Total: 2]
15	(a) Fluctuations of readings / count rate on GM tube	[1]
	(b) The readings are not affected by external conditions (e.g. temperature, pressure)	[1]
		[Total: 2]