MARK SCHEME for the October/November 2011 question paper

MMM. Hiremepapers.com

for the guidance of teachers

8780 PHYSICAL SCIENCE

8780/03

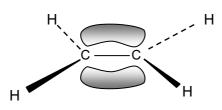
Paper 3, maximum raw mark 80

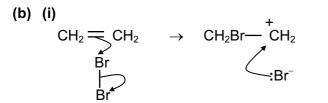
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.


	Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE AS LEVEL – October/November 2011	8780	03
1	(a) 8.0 – 9.5	5 (°C) ;		[1]
	(b) reversed non-linea	l scale ar, high numbers closer, at least 4 and scale easy to use)	[1] [1]
				[Total: 3]
2	(a) +3/3/III	allow 3+		[1]
		$O_2 \text{ produced} = \frac{15}{(15 \times 8.31 \times 298)}$		[1]
	V = nRT	$p = \frac{(15 \times 8.31 \times 298)}{100 \times 10^3}$ correct conversion and substitution	ution	[1]
	0.37(1) r			[1]
				[Total: 4]
3	\ /	200 N, $F = 17200$ N se $g = 9.81$ or 9.8 Nkg ⁻¹)		[1]
	(b) (i) <u>use</u>	of force/area \rightarrow 17 200/(2.4 × 1.0)		[1]
	720	0Pa (accept ecf)		[1]
		<u>of</u> p = <i>ρ</i> g∆h = 7200/(1080 × 100) → ∆h = 0.67 m (accept ecf)		[1] [1]
				r.1
	(c) mas	s of water displaced = 0.68 × 1.0 × 2.4 × 1080 = 1760 kg	9	[1]
				[Total: 6]


	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE AS LEVEL – October/November 2011	8780	03
4	(a)	(i)	BF ₃ drawn as trigonal planar BF_4^- drawn as F_4^-	as tetrahedral (-)	[2]
			structures BF ₃ named as trigonal planar BF ₄ ⁻ angle = $109(\frac{1}{2})^{\circ}$	en in place of both	[1] [1]
		(ii)	equal repulsion between 3 bonding pairs		[1]
	(b)	(i)	dative/coordinate		[1]
		(ii)	lone pair donated from F^- to B allow to B	3F ₃	[1]
					[Total: 7]
5	(a)	(i)	1 mm – 1 m		[1]
		(ii)	recognition that it is a diffraction effect radio waves wavelength much longer than microwaves / less than size of mountain / radio waves wavelength sim	[1] length much [1]	
	(b)	(i)	path difference for contributions from slits = <i>n</i> wavelength so waves in phase (and add)/constructive interference	[1] [1]	
		(ii)	path difference for contributions from slits = $[n + \frac{1}{2}]$ wav so waves out of phase (and subtract/cancel) / destructive	[1] [1]	
		(iii)	amplitude = maximum amplitude $\div \sqrt{2}$		[1]
		(iv)	 maxima and minima/fringes move further apart maxima and minima/fringes move closer 	[1] [1]	
					[Total: 10]

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS LEVEL – October/November 2011	8780	03	
6	(a) CH	4 + H	$H_2O \rightarrow CO + 3H_2$		[1]	
	(b) (i)	-	quotes/refers to data showing decreased yield as temp. increases high temp. favours endothermic direction so forwards = exothermic			
	(ii)		fewer molecules/moles on right, high pressure favours direction producing fewer molecules (∴higher yield)			
			pressure is compromise between rate/yield and cost of maintaining high pressure allow: pressure used is the maximum economic pressure / is the highest economically viable pressure		[1]	
	(c) (i)	Wa	and H_2 have only (weak) induced dipole-induced dipole aal forces of attraction, (strong) hydrogen bonding prese H_3 molecules		[1]	
	h Va		hydrogen bonding much stronger than induced dipole-induced dipole/ van der Waal forces (so more energy/higher temperature needed to separate molecules)			
	(ii)	allo	<u>oling</u> the mixture allows ammonia to be removed as a <u>lic</u> ow a specific statement to the effect that ammonia is rer ndensation		[1]	
	(d)	ΔH = 3	$H_{\rm f} = [(-414.5) + 2(-81.0)] - [(-287.0) + (-320.5)]$ 31 kJ mol ⁻¹		[1] [1]	
					[Total: 10]	
7	(a) the hyd		ogen nucleus has less charge / smaller (not less mass)	lower speed	[1]	
	(b) (i)		mpted use of momentum equation \rightarrow 5 × 0.4 = 3 × 0.4 + × 0.4 = 8m _B \rightarrow m = 0.10 kg	· 8m	[1] [1]	
	(ii)	corre	before = $\frac{1}{2} \times 0.4 \times 5^2$ =5.0 J OR KE after = $\frac{1}{2} \times 0.4 \times 5^2$ ect calculation for both (= 5 J) ement that <u>kinetic</u> energy before = <u>kinetic</u> energy after	$+1/2 \times 0.1 \times 8^2$	[1] [1] [1]	
					[Total: 6]	

Page 5	Mark Scheme: Teachers' version	Syllabus Pape	
	GCE AS LEVEL – October/November 2011	8780	03

- 8 (a) (i) σ bonding involves end-on overlap of orbitals / clear diagram [1]
 π bonding involves sideways overlap (of 'p' orbitals) / clear diagram [1]
 - (ii) diagram of ethene showing planar shape and π bond clearly drawn, e.g. [1]

3 curly arrows correctly positioned [1] correct intermediate bromocarbocation [1] 1,2-dibromoethane [1] (ii) induced dipole on Br₂, caused by high electron density on C=C bond [1] (c) (i) correct structure for 2-bromopropane – displayed formula expected but [1] allow below as minimum detail: $CH_3 - CH - CH_3$ Br (ii) alcohol [1] (iii) H^+ and $K_2Cr_2O_7$ and heat [1] (iv) propanone [1]

[Total: 11]

	Page 6			Mark Scheme: Teachers' version	Syllabus	Paper		
				GCE AS LEVEL – October/November 2011	8780	03		
9	(a)		positive background dough electrons embedded					
	(b)		mark (i) and (ii) as one entity α-particle fired at gold foil					
	(c)	foil mos * lea (ver ** le	very f st go ads to y) sm eads f two f elect	ints, including at least one observation and one linked co thin/leaf straight through* o mostly empty space nall percentage deflected through large angles** to very small/massive nucleus from: trons in allowed orbits (accept orbitals/shells)	onclusion, from:	[max 3]		
				ts 'radiationless' 1 numbers in each orbit		[max 2]		
		(ii)	-	ip numbers = number of outer shell electrons od = number of shells		[1] [1]		
						[Total: 10]		
10	(a)	(i)	2I ₂ -	$-8I_3 - 0 \times I_1 = 0 \rightarrow I_3 = 4I_2$		[1]		
		(ii)	<i>I</i> ₂ =	1.6 A, <i>I</i> ₃ = 0.4 A		[1]		
	(b)	(1 –	$I_1 -$	$I_2 = 0 \rightarrow 1 - I_1 - 1.6 = 0 \rightarrow =) - 0.6 \text{ A}$ (or could be done	at point G)	[1]		
	(c)		<u>of</u> Ki 13.2	irchhoff's 2 nd law around suitable loop V		[1] [1]		
						[Total: 5]		

	Page 7			Mark Scheme: Teachers' version Syllabus		Syllabus	Paper	
				GCE A	6 LEVEL – October/November 20	11 8780	03	
11	(a) ((i)	simplest ratio of atoms of each element in a compound/molecule				[1]	
	(ii)	<u>Na</u>	<u>CI</u>	<u>o</u>			
			<u>21.6</u> 23	<u>33.3</u> 35.5	<u>45.1</u> 16		[1]	
			0.93	9 0.938	2.82			
				: 1 IC <i>1</i> O ₃	: 3		[1]	
	(b) ((i)	mole	es $Q_2CO_3 = 0$	$70 \times 0.263/1000 = 5.71 \times 10^{-3}$ (mol) .571/2 = 2.85 × 10 ⁻³ (mol) .64/2.85 × 10 ⁻³ = 138)	[1] [1] [1]	
	(1	ii)) = [138 – 60 so_Q= K/p]/2, mark is for 60 otassium		[1] [1]	

[Total: 8]