MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

8780 PHYSICAL SCIENCE
 Paper 3, maximum raw mark 80

8780/03

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS LEVEL - October/November 2011	$\mathbf{8 7 8 0}$	$\mathbf{0 3}$

1 (a) $8.0-9.5\left({ }^{\circ} \mathrm{C}\right)$;
(b) reversed scale
non-linear, high numbers closer, at least 4 and scale easy to use

2
(a) $+3 / 3 /$ III allow $3+$
(b) moles CO_{2} produced $=\underline{15}$
$V=n R T / p=\frac{(15 \times 8.31 \times 298)}{100 \times 10^{3}}$ correct conversion and substitution $0.37(1) \mathrm{m}^{3}$

3 (a) $W=17200 \mathrm{~N}, F=17200 \mathrm{~N}$
(must use $g=9.81$ or $9.8 \mathrm{Nkg}^{-1}$)
(b) (i) use of force/area $\rightarrow 17200 /(2.4 \times 1.0)$

7200 Pa (accept ecf)
(ii) use of $p=\rho g \Delta h$
$\Delta h=7200 /(1080 \times 100) \rightarrow \Delta h=0.67 \mathrm{~m}$ (accept ecf)
(c) mass of water displaced $=0.68 \times 1.0 \times 2.4 \times 1080=1760 \mathrm{~kg}$
[Total: 6]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS LEVEL - October/November 2011	8780	03

4 (a) (i) BF_{3} drawn as trigonal planar

$\mathrm{BF}_{4}{ }^{-}$drawn as tetrahedral

(-)
allow [1] if two fully-correct dot-and-cross diagrams given in place of both structures
BF_{3} named as trigonal planar
$\mathrm{BF}_{4}{ }^{-}$angle $=109(1 / 2)^{\circ}$
(ii) equal repulsion between 3 bonding pairs
(b) (i) dative/coordinate
(ii) lone pair donated from F^{-}to B allow to BF_{3}

5 (a) (i) $1 \mathrm{~mm}-1 \mathrm{~m}$
(ii) recognition that it is a diffraction effect
radio waves wavelength much longer than microwaves / microwaves wavelength much less than size of mountain / radio waves wavelength similar to mountain
(b) (i) path difference for contributions from slits = n wavelengths
so waves in phase (and add)/constructive interference
(ii) path difference for contributions from slits $=[n+1 / 2]$ wavelengths
so waves out of phase (and subtract/cancel) / destructive interference
(iii) amplitude $=$ maximum amplitude $\div \sqrt{ } 2$
(iv) 1. maxima and minima/fringes move further apart
2. maxima and minima/fringes move closer

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS LEVEL - October/November 2011	8780	03

6 (a) $\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}$
(b) (i) quotes/refers to data showing decreased yield as temp. increases high temp. favours endothermic direction so forwards = exothermic
(ii) fewer molecules/moles on right, high pressure favours direction producing fewer molecules (\therefore higher yield)
(iii) pressure is compromise between rate/yield and cost of maintaining high pressure
allow: pressure used is the maximum economic pressure / is the highest economically viable pressure
(c) (i) N_{2} and H_{2} have only (weak) induced dipole-induced dipole/van der Waal forces of attraction, (strong) hydrogen bonding present between NH_{3} molecules hydrogen bonding much stronger than induced dipole-induced dipole/ van der Waal forces (so more energy/higher temperature needed to separate molecules)
(ii) cooling the mixture allows ammonia to be removed as a liquid allow a specific statement to the effect that ammonia is removed by condensation
(d) $\quad \Delta H_{\mathrm{f}}=[(-414.5)+2(-81.0)]-[(-287.0)+(-320.5)]$
$=31 \mathrm{~kJ} \mathrm{~mol}^{-1}$
[Total: 10]

7 (a) the hydrogen nucleus has less charge / smaller (not less mass) / lower speed
(b) (i) attempted use of momentum equation $\rightarrow 5 \times 0.4=3 \times 0.4+8 \mathrm{~m}$
$\rightarrow 2 \times 0.4=8 \mathrm{~m}_{\mathrm{B}} \rightarrow \mathrm{m}=0.10 \mathrm{~kg}$
(ii) KE before $=1 / 2 \times 0.4 \times 5^{2}=5.0 \mathrm{~J}$ OR KE after $=1 / 2 \times 0.4 \times 5^{2}+1 / 2 \times 0.1 \times 8^{2}$ correct calculation for both ($=5 \mathrm{~J}$)
statement that kinetic energy before $=\underline{k i n e t i c ~ e n e r g y ~ a f t e r ~}$

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS LEVEL - October/November 2011	8780	03

8 (a) (i) σ bonding involves end-on overlap of orbitals / clear diagram π bonding involves sideways overlap (of ' p ' orbitals) / clear diagram
(ii) diagram of ethene showing planar shape and π bond clearly drawn, e.g.

(b) (i)

3 curly arrows correctly positioned
correct intermediate bromocarbocation
1,2-dibromoethane
(ii) induced dipole on Br_{2}, caused by high electron density on $\mathrm{C}=\mathrm{C}$ bond
(c) (i) correct structure for 2-bromopropane - displayed formula expected but allow below as minimum detail:

(ii) alcohol
(iii) H^{+}and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and heat
(iv) propanone

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS LEVEL - October/November 2011	$\mathbf{8 7 8 0}$	$\mathbf{0 3}$

9 (a) positive background dough electrons embedded
(b) mark (i) and (ii) as one entity α-particle fired at gold foil
three points, including at least one observation and one linked conclusion, from:
foil very thin/leaf
most go straight through*

* leads to mostly empty space
(very) small percentage deflected through large angles**
** leads to very small/massive nucleus
(c) (i) two from:
electrons in allowed orbits (accept orbitals/shells)
orbits 'radiationless'
fixed numbers in each orbit [max 2]
(ii) group numbers = number of outer shell electrons
period = number of shells

10 (a) (i) $2 I_{2}-8 I_{3}-0 \times I_{1}=0 \rightarrow I_{3}=4 I_{2}$
(ii) $I_{2}=1.6 \mathrm{~A}, I_{3}=0.4 \mathrm{~A}$
(b) ($\left.1-I_{1}-I_{2}=0 \rightarrow 1-I_{1}-1.6=0 \rightarrow=\right)-0.6 \mathrm{~A}$ (or could be done at point \mathbf{G})
(c) use of Kirchhoff's $2^{\text {nd }}$ law around suitable loop
$E=13.2 \mathrm{~V}$

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS LEVEL - October/November 2011	$\mathbf{8 7 8 0}$	$\mathbf{0 3}$

11 (a) (i) simplest ratio of atoms of each element in a compound/molecule
[1]
(ii) $\begin{array}{ccc}\underline{\mathrm{Na}} & \underline{\mathrm{Cl}} & \underline{\mathrm{O}} \\ & \frac{21.6}{23} & \frac{33.3}{35.5} \\ & \frac{45.1}{16}\end{array}$
$0.939 \quad 0.938 \quad 2.82$
$=1: 1: 3$
$=\mathrm{NaClO}_{3}$
(b) (i) moles $\mathrm{HCl}=21.70 \times 0.263 / 1000=5.71 \times 10^{-3}(\mathrm{~mol})$
moles $\mathrm{Q}_{2} \mathrm{CO}_{3}=0.571 / 2=2.85 \times 10^{-3}(\mathrm{~mol})$
$M_{r}\left(\mathrm{Q}_{2} \mathrm{CO}_{3}\right)=0.394 / 2.85 \times 10^{-3}=138$
(ii) $A_{r}(Q)=[138-60] / 2$, mark is for 60 $=39$ so $Q=K /$ potassium

