wjec cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics – FP3 0979/01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS – FP3 SUMMER 2016 MARK SCHEME

Oues	Solution	Mark	Notes
1	Consider		
	$x = r \cos \theta$	M1	
	$= \cos\theta (1 + 2\tan\theta) = \cos\theta + 2\sin\theta$	A1	
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin\theta + 2\cos\theta$	B1	
	(The tangent is perpendicular to the initial line		
	where) $\frac{\mathrm{d}x}{\mathrm{d}\theta} = 0$.	M1	
	$\sin\theta = 2\cos\theta$		
	$\tan\theta = 2$	A1	
	$\theta = 1.11 (63^\circ)$	A1	or $0 \le \theta \le \frac{\pi}{2} \Longrightarrow 0 \le \tan \theta \le 1$
	This lies outside the domain for the curve, hence		4
	no point at which the tangent is perpendicular to the initial line.	A1	
2 (a)	$f(x) = \cos x + \cosh x$		
	$f'(x) = -\sin x + \sinh x$		
	$f''(x) = -\cos x + \cosh x$	B1	
	$f'''(x) = \sin x + \sinh x$		
	$f^{(4)}(x) = \cos x + \cosh x (= f(x))$	B1	Convincing
(b)(i)	f(0) = 2		
	f'(0) = 0		
	f''(0) = 0	D 1	
	f'''(0) = 0	BI	
	$\int (0) = 0$		
	$f^{(7)}(0) = 2$		
	This pattern repeats itself every four differentiations so $f^{(n)}(0) = 2$ if <i>n</i> is a multiple of 4 and zero otherwise. (Therefore the only terms in the Maclaurin series are those for which the power is a multiple of 4.)	B1	Accept unsimplified expressions
(ii)	The first three terms are $2, \frac{x^4}{x^4}, \frac{x^8}{x^8}$	DI	
	12 20160	B1	
(c)(i)	Substituting the series,		
	$24 + x^4 + \frac{x^6}{1680} - x^4 = 36$	M1	
	$r^8 = 20160$		
	x = 20100 x = 3.45	A1	
(••)		A1	
(11)	Let $g(x) = 12(\cos x + \cosh x) - x^4 - 36$		
	Consider $g(3.445) = -0.0507$		
	g(3.455) = 0.2312	B1	
	The change of sign confirms that the value of the root is 3.45 correct to 3 significant figures	D 1	
	100(is 5.45 correct to 5 significant ligures.	BI	

Ques	Solution	Mark	Notes
3	Putting $t = \tan\left(\frac{x}{2}\right)$		
	$[0,\pi/2]$ becomes $[0,1]$	B1	
	$dx = \frac{2dt}{1+t^2}$	B 1	
	$I = \int_{0}^{1} \frac{2dt/(1+t^{2})}{3+5(1-t^{2})/(1+t^{2})}$	M1A1	
	$=\int_{0}^{1}\frac{2\mathrm{d}t}{8-2t^{2}}$	A1	
	$=\int_{0}^{1}\frac{\mathrm{d}t}{4-t^{2}}$	A1	
	$= \frac{1}{4} \left[\ln \left(\frac{2+t}{2-t} \right) \right]_{0}^{t}$	A1	
	$= \frac{1}{4} \ln 3 = \ln 3^{1/4}$	A1	
4(a)	The equation is		
	$\cosh 2\theta - 8\cosh \theta - k = 0$	M1	
	$2\cosh^2\theta - 8\cosh\theta - (k+1) = 0$		
	$2\cos(n - \theta) = \cos(n - \theta) = 0$	A1	
	$\cosh\theta = \frac{8\pm\sqrt{12+8\kappa}}{4}$	m1	
	If $k < -9$, $72 + 8k < 0$ so no real solutions.	A1	
(0)	If $k = -8$,		
	$\cosh a = \frac{8 \pm \sqrt{8}}{1202} = 1202 = 2707$		
	$\cos \theta = \frac{1}{4} - 1.292, 2.707$	MIAI	
	$\theta = 0.75, 1.65$	A1	Allow ±
(c)(i)	There is a repeated root when $k = -9$	B1	
(ii)	There will be only one real root if the smaller root of the quadratic equation in (a) < 1 , ie	M1	
	$\frac{8 - \sqrt{72 + 8k}}{4} < 1$	A1	
	$\frac{4}{\sqrt{72+8k}} > 4$	M1	
	$\sqrt{\frac{12+8k}{4}} > 4$ $k > -7$	MI A1	Allow $k = -9$ to be included here

Ques	Solution	Mark	Notes
5(a)	$\frac{dy}{dy} = \frac{\sin x}{2}$	D1	
	$dx = 1 + \cos x$	DI	
	$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1 + \frac{\sin^2 x}{\left(1 + \cos x\right)^2}$	M1	
	$= \frac{1 + 2\cos x + \cos^2 x + \sin^2 x}{(1 + \cos^2 x)^2}$	A1	
	$=\frac{2+2\cos x}{(1+\cos x)^2}$	A1	
	$=\frac{2}{(1+\cos x)}$		
(b)	$(1 + \cos x)$		
	Arc length = $\sqrt{2} \int_{0}^{\pi/2} \sqrt{\frac{1}{(1+\cos x)}} dx$	M1	
	$=\sqrt{2}\int_{0}^{\pi/2}\sqrt{\frac{1}{2\cos^{2}(x/2)}}dx$	m1	
	$= \int_{0}^{\pi/2} \sec(x/2) \mathrm{d}x$	A1	
	$= 2 \left[\ln(\sec(x/2) + \tan(x/2)) \right]_{0}^{\pi/2}$	Δ1	
	$-2\ln(1+\sqrt{2})$	111	
	$= 2 \ln(1 + \sqrt{2})$ $= \ln(3 + 2\sqrt{2})$ METHOD 2	A1 A1	Award this A1 if the 2 is missing
	Arc length = $\sqrt{2} \int_{0}^{\pi/2} \sqrt{\frac{1}{(1+\cos x)}} dx$	M1	
	Put $t = tan\left(\frac{x}{2}\right); dx = \frac{2dt}{1+t^2}$	ml	
	Arc length = $\sqrt{2} \int_{0}^{1} \sqrt{\frac{1}{(1+(1-t^{2})/(1+t^{2}))}} \times \frac{2dt}{1+t^{2}}$	A1	
	$= 2\int_{0}\sqrt{\frac{1}{(1+t^2)}}\mathrm{d}t$	A1	
	$= 2\ln \left[t + \sqrt{1 + t^2}\right]_{p}$ = $2\ln \left[1 + \sqrt{2}\right] = \ln(3 + 2\sqrt{2})$	A1 A1	Allow $\sinh^{-1}(t)$

Ques	Solution	Mark	Notes
6(a)(i)	Let $f(r) = (3 - \sinh r)^{\frac{1}{5}}$		
	$1 \qquad \qquad$		
	$f'(x) = \frac{1}{5}(3 - \sinh x)^{-5} \times (-\cosh x)$	M1A1	
	f'(1) = -0.1907	A1	
	Since this is less than 1 in modulus, the sequence	Δ1	
	is convergent. Let $a(x) = \sinh^{-1}(3 - x^5)$		
	$\frac{1}{1}$		
	$g'(x) = \frac{1}{\sqrt{1 + (3 - x^5)^2}} \times (-5x^4)$	M1A1	
	g'(1) = -2.236	A1	
	Since this is greater than 1 in modulus, the	A 1	
	sequence is divergent.	AI	
(ii)	Successive approximations are		
	1		
	1.127828325	M1A1	
	1.107049937		
	1.105684578		
	1.105990816 (since the sequence oscillates) the value of the	A1	
	root is 1.106 correct to three decimal places.	A1	
(b)			
(0)	The Newton-Raphson iteration is		
	$x \rightarrow x - \frac{x^5 + \sinh x - 3}{4}$	N#1 A 1	
	$5x^4 + \cosh x$ Successive approximations are	MIAI	
	1		Allow any starting value
	1.126056647	M1A1	
	1.105346041 1.105935334		
	1.105934755		
	1.105934754 The value of the root is 1.105025 correct to six	A1	This last value must be seen for A1
	decimal places.	A1	
	-		
1		1	

Ques	Solution	Mark	Notes
7(a)	$I_n = -\frac{1}{2}\int_0^{\pi} x^n \mathrm{d}(\cos 2x)$	M1	
	$= -\frac{1}{2} \left[x^{n} \cos 2x \right]_{0}^{\pi} + \frac{1}{2} \int_{0}^{\pi} n x^{n-1} \cos 2x dx$	A1A1	
	$= -\frac{\pi^{n}}{2} + \frac{n}{4} \int_{0}^{\pi} x^{n-1} d(\sin 2x)$	M1	
	$= -\frac{\pi^{n}}{2} + \frac{n}{4} \Big[x^{n-1} \sin 2x \Big]_{0}^{\pi} - \frac{n(n-1)}{4} I_{n-2}$	A1A1	
(b)	$= -\frac{\pi^n}{2} - \frac{n(n-1)}{4} I_{n-2}$		
	$I_0 = \int_0^{\pi} \sin 2x dx = -\frac{1}{2} [\cos 2x]_0^{\pi} = 0$	B1	
	$I_4 = -\frac{\pi^4}{2} - 3I_2$	M1	
	$= -\frac{\pi^4}{2} - 3\left(-\frac{\pi^2}{2} - \frac{1}{2}I_0\right)$	A1	FT their I_0 for this A1
	= - 34 cao	A1	

0979/01 GCE Mathematics FP3 MS Summer 2016/LG