

0983/01

**MATHEMATICS - S1** 

**Statistics** 

A.M. WEDNESDAY, 15 June 2016

1 hour 30 minutes plus your additional time allowance

© WJEC CBAC Ltd. SM\*(S16-0983-01)MLP

## **ADDITIONAL MATERIALS**

In addition to this examination paper, you will need:

a 12 page answer book; a Formula Booklet; a calculator; statistical tables (Murdoch and Barnes or RND/WJEC Publications).

## **INSTRUCTIONS TO CANDIDATES**

Use black ink or black ball-point pen or your usual method.

**Answer ALL questions.** 

Sufficient working must be shown to demonstrate the MATHEMATICAL method employed.

## **INFORMATION FOR CANDIDATES**

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. The events  $\boldsymbol{A}$  and  $\boldsymbol{B}$  are such that

$$P(A) = 0.3, P(B) = 0.4$$

Evaluate  $P(A \cup B)$  in each of the following cases.

(a)  $\boldsymbol{A}$  and  $\boldsymbol{B}$  are mutually exclusive.

[2 marks]

(b)  $\boldsymbol{A}$  and  $\boldsymbol{B}$  are independent.

[3 marks]

(c) 
$$P(A|B) = 0.25$$
.

[4 marks]

- 2. In a certain population, 45% are male and 55% are female. It is known that 3% of the males have red hair while 5% of the females have red hair. One of the members of the population is selected at random.
- (a) Calculate the probability that the selected person has red hair.

[3 marks]

(b) Given that the selected person has red hair, calculate the probability that this person is female.

[3 marks]

- 3. The random variable  $\boldsymbol{X}$  has a Poisson distribution with mean  $\boldsymbol{2}$ .
  - The random variable Y = aX + b where a, b are positive constants.
- (a) Given that the mean and the variance of  ${\bf Y}$  are both equal to  ${\bf 8}$ , determine the values of  ${\bf a}$  and  ${\bf b}$  [6 marks]
- (b) Bethan states that, because the mean and variance of  $\mathbf{Y}$  are equal, it must follow a Poisson distribution.

Explain briefly why this is not the case.

[1 mark]

- 4. The committee of a social club contains 8 members, of which 4 are Welsh, 2 are English and 2 are Irish. A sub-committee of 3 members is to be set up and it is decided to select the 3 members at random.
- (a) Calculate the probability that the sub-committee contains
  - (i) no Welsh members,
  - (ii) one member of each nationality.

[5 marks]

(b) Jack is a member of the committee. Find the probability that he is selected for the sub-committee.

[2 marks]

- 5. Customers arrive at a shop such that the number of arrivals in a time interval of duration t minutes follows a Poisson distribution with mean 0.2t.
- (a) Without the use of tables, determine the probability that the number of arrivals between 10:00 a.m. and 10:30 a.m. is
  - (i) exactly 5
  - (ii) more than 3

[6 marks]

(b) Given that the probability of exactly  $\mathbf{5}$  arrivals in an interval of duration t minutes is 0.0602 where t < 30

use tables to determine the value of t

[3 marks]

6. In a shooting range at a country fair, customers pay £5 to fire 8 shots at a target. Let X denote the number of shots which hit the target. Prizes are awarded according to the following rules.

If  $X \le 2$ , no prize is awarded.

If X = 2, a prize of £10 is awarded.

If X > 2, a prize of £25 is awarded.

Jim decides to spend £5 to fire 8 shots. You may assume that the probability of one of his shots hitting the target is 0-12 and that successive shots are independent.

- (a) Calculate the probability that he wins
  - (i) no prize,
  - (ii) a £10 prize,
  - (iii) a £25 prize.

[5 marks]

(b) Calculate his expected profit, giving your answer correct to two decimal places.

[2 marks]

7. The discrete random variable **X** has the following probability distribution.

| X        | 1   | 2   | 3   | 4 | 5 |
|----------|-----|-----|-----|---|---|
| P(X = x) | 0.3 | 0-2 | 0.1 | a | b |

where  $\boldsymbol{a}$ ,  $\boldsymbol{b}$  are positive constants.

(a) (i) Show that

$$a + b = 0.4$$
.

(ii) Given that E(X) = 2.85, obtain a second equation involving a and b Hence determine the value of a and the value of a

[5 marks]

(b) Given that  $X_1$  and  $X_2$  are independent observations of the random variable X determine  $P(X_1 + X_2 \leq 4)$ .

[4 marks]

8. Jane is solving a problem in which she has to calculate P(X = 2)

where X has a Poisson distribution with mean 3. Unfortunately, she has no statistical tables with her and her simple calculator has no  $e^X$  button and it can only carry out arithmetic operations. She decides to use an appropriate binomial distribution to give an approximate value for

$$P(X=2)$$

She takes n = 50.

(a) What value of **p** should she take?

[2 marks]

(b) Write down and evaluate an arithmetic expression giving her approximate value correct to four decimal places.

[2 marks]

(c) Show that the approximation is within 1% of the value obtained from the appropriate Poisson table. [3 marks]

9. The time,  $\boldsymbol{X}$  hours, in the evening that Bill spends on his homework has probability density function  $\boldsymbol{f}$  given by

$$f(x) = k(2x-1) \qquad \text{for } 1 \leqslant x \leqslant 2$$

$$f(x) = 0$$
 otherwise,

where  $\boldsymbol{k}$  is a constant.

- (a) (i) Find an expression in terms of K and X for F(x), valid for  $1 \le x \le 2$ , where F denotes the cumulative distribution function of X.
  - (ii) Hence show that  $k = \frac{1}{2}$ .

[5 marks]

- 9(b) Determine
  - (i) E(X),
  - (ii) the median of  $\boldsymbol{X}$ ,
  - (iii) the probability that, on a randomly chosen evening, Bill spends longer than **1-5** hours on his homework.

[9 marks]

**END OF PAPER**