

0981/01

MATHEMATICS M2

Mechanics

A.M. TUESDAY, 21 June 2016

1 hour 30 minutes plus your additional time allowance

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

a 12 page answer book; a Formula Booklet; a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink, black ball-point pen or your usual method.

Answer ALL questions.

Take g as 9.8 ms^{-2} .

Sufficient working must be shown to demonstrate the MATHEMATICAL method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. A particle of mass 4 kg moves along the X-axis, starting, when t = 0, from the point where x = 3

At time ts, its velocity vms^{-1} is given by

$$v = 12t^2 - 7kt + 1$$

where k is constant. When t = 2, the displacement of the particle from the origin is $16 \,\mathrm{m}$

(a) Determine the value of
$$\boldsymbol{k}$$

[5 marks]

(b) Calculate the magnitude of the force acting on the particle when t = 5

[4 marks]

- 2. A particle is projected from horizontal ground with speed $24 \cdot 5 \, ms^{-1}$ in a direction inclined at an angle of 30° above the horizontal.
- (a) Calculate the horizontal range of the particle. [6 marks]
- (b) Determine the maximum height reached by the particle.

[3 marks]

(c) Write down the speed and the direction of motion of the particle as it hits the ground.

[1 mark]

3. At time t = 0 S, the position vector of an object A is \underline{i} m and the position vector of another object B is $3\underline{i}$ m The constant velocity vector of A is $2\underline{i} + 5\underline{j} - 4\underline{k}$ ms⁻¹ and the constant velocity vector of B is $\underline{i} + 3\underline{j} - 5\underline{k}$ ms⁻¹.

Determine the value of \boldsymbol{t} when \boldsymbol{A} and \boldsymbol{B} are closest together and find the least distance

between **A** and **B**.

[9 marks]

- 4. By burning a charge, a cannon fires a cannon ball of mass 12 kg horizontally. As the cannon ball leaves the cannon, its speed is 600 ms⁻¹ The recoiling part of the cannon has a mass of 1600 kg
- (a) Determine the speed of the recoiling part immediately after the cannon ball leaves the cannon.

[3 marks]

(b) Find the energy created by the burning of the charge. State any assumption you have made in your solution.

[4 marks]

(c) Calculate the constant force needed to bring the recoiling part to rest in **1-2 m**

[2 marks]

5. A particle is attached to one end of a light elastic string of natural length lm and modulus of elasticity λN . The other end of the string is attached to the ceiling. The particle hangs in equilibrium. The length of the string is 0.95 m when the

The length of the string is **U-95 M** when the weight of the particle is **30 N**, and **1-15 m** when the weight of the particle is **70 N** Find the value of l and the value of λ [6 marks] 6. A particle moves on a horizontal plane such that its velocity vector $\underline{V} \text{ ms}^{-1}$ at time ts is given by

<u>v</u> = 7 sin2t <u>i</u> + 6 cos3t <u>j</u>

 (a) Find the acceleration vector of the particle at time ts.

[2 marks]

(b) Given that when t = 0, the particle has position vector (0.5i + 3j)m, find the position vector

of the particle when $t = \frac{\pi}{2}$. [5 marks]

9

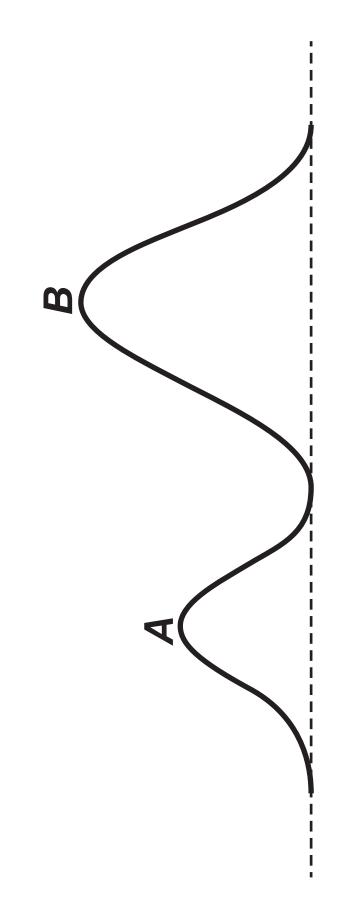
7. The diagram opposite shows two points **A** and **B** on a mountain bike track.

The heights of A and B above ground level are $20 \, m$ and $22 \, m$ respectively.

The length of the track between A and B is **16** m

16 m

The resistance to motion of a biker on the track may be modelled by a constant force of magnitude **50 N**


The total mass of the biker and his bike is $70 \, kg$

Find the minimum value of ${f V}$ if the biker is to

reach \boldsymbol{B} without pedalling.

[7 marks]

8. A rough circular plate rotates horizontally about a smooth fixed vertical axis through its centre O
A point A on the plate moves with constant speed Vms⁻¹, where OA is 1.6 m
A particle of mass *M* kg lies on the point A on the plate.
The coefficient of friction between the particle and the plate is 0.72
Given that the particle remains at the point A, find the greatest possible value of V

Hence write down the greatest possible value of the angular velocity of the particle. State clearly your units for the angular velocity. [7 marks] 9. A smooth sphere, with centre **O** and radius **4 m**, is fixed.

A particle \boldsymbol{P} , of mass \boldsymbol{m} , resting on the sphere at its highest point, is given a horizontal speed of

magnitude \sqrt{g} ms⁻¹

where *G* is the magnitude of the acceleration due to gravity.

At the instant the line ${\boldsymbol O}{\boldsymbol P}$ makes an angle ${\boldsymbol heta}$ with

the upwards vertical, the speed of P is vms^{-1}

(a) Determine an expression for V^2 in terms of g and θ while P remains in contact with the sphere.

[4 marks]

(b) Find, in terms of m, g and θ , the magnitude of the force exerted by the sphere on P. Hence calculate the value of $\cos \theta$ and the value of v^2 when P leaves the surface of the sphere. [7 marks]

END OF PAPER