山јес
 GCE AS/A level
 cbac

0981/01

MATHEMATICS M2

Mechanics
A.M. TUESDAY, 21 June 2016

1 hour 30 minutes plus your additional time allowance

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:
a 12 page answer book;
a Formula Booklet;
a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink, black ball-point pen or your usual method.

Answer ALL questions.
Take g as $9.8 \mathrm{~ms}^{-2}$.
Sufficient working must be shown to demonstrate the MATHEMATICAL method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. A particle of mass $\mathbf{4} \mathbf{k g}$ moves along the \boldsymbol{X}-axis, starting, when $\boldsymbol{t}=0$, from the point where $x=3$
At time $\boldsymbol{t} \mathbf{S}$, its velocity $\boldsymbol{V} \mathbf{~ m s}^{-1}$ is given by
$v=12 t^{2}-7 k t+1$
where \boldsymbol{K} is constant.
When $\boldsymbol{t}=2$, the displacement of the particle from the origin is 16 m
(a) Determine the value of \boldsymbol{K}
[5 marks]
(b) Calculate the magnitude of the force acting on the particle when $\boldsymbol{t}=\mathbf{5}$
[4 marks]
2. A particle is projected from horizontal ground with speed $24.5 \mathrm{~ms}^{-1}$ in a direction inclined at an angle of 30° above the horizontal.
(a) Calculate the horizontal range of the particle.
[6 marks]
(b) Determine the maximum height reached by the particle.
[3 marks]
(c) Write down the speed and the direction of motion of the particle as it hits the ground.
[1 mark]
3. At time $\boldsymbol{t}=\mathbf{0} \mathbf{S}$, the position vector of an object

A is $\underline{\mathrm{I}} \mathrm{m}$ and the position vector of another object B is 3 I m
The constant velocity vector of \boldsymbol{A} is
$2 \underline{i}+5 \underline{j}-4 \underline{k} \mathrm{~ms}^{-1}$ and the constant velocity vector of B is $\underline{i}+3 \underline{j}-5 \underline{k} \mathrm{~ms}^{-1}$.

Determine the value of \boldsymbol{t} when \boldsymbol{A} and \boldsymbol{B} are closest together and find the least distance between \boldsymbol{A} and \boldsymbol{B}.
[9 marks]
4. By burning a charge, a cannon fires a cannon ball of mass 12 kg horizontally.
As the cannon ball leaves the cannon, its speed is $600 \mathrm{~ms}^{-1}$
The recoiling part of the cannon has a mass of 1600 kg
(a) Determine the speed of the recoiling part immediately after the cannon ball leaves the cannon.
[3 marks]
(b) Find the energy created by the burning of the charge. State any assumption you have made in your solution.
[4 marks]
(c) Calculate the constant force needed to bring the recoiling part to rest in 1.2 m
[2 marks]
5. A particle is attached to one end of a light elastic string of natural length $\mathbf{l} \mathbf{m}$ and modulus of elasticity $\lambda \mathbf{N}$
The other end of the string is attached to the ceiling.
The particle hangs in equilibrium.
The length of the string is 0.95 m when the weight of the particle is 30 N , and 1.15 m when the weight of the particle is 70 N
Find the value of \boldsymbol{l} and the value of λ
[6 marks]
6. A particle moves on a horizontal plane such that its velocity vector $\underline{\mathbf{V}} \mathrm{MS}^{-1}$ at time $\boldsymbol{t} \mathbf{S}$ is given by

$\underline{\mathbf{v}}=7 \sin 2 t \underline{i}+6 \cos 3 t \underline{j}$

(a) Find the acceleration vector of the particle at time $t s$.
[2 marks]
(b) Given that when $\boldsymbol{t}=\mathbf{0}$, the particle has position vector $(0 \cdot 5 \underline{i}+3 \underline{j}) \mathrm{m}$, find the position vector
of the particle when $t=\frac{\pi}{2}$.
[5 marks]
7. The diagram opposite shows two points \boldsymbol{A} and \boldsymbol{B} on a mountain bike track.

The heights of \boldsymbol{A} and \boldsymbol{B} above ground level are 20 m and 22 m respectively.
The length of the track between \boldsymbol{A} and \boldsymbol{B} is 16 m
The resistance to motion of a biker on the track may be modelled by a constant force of magnitude 50 N
The total mass of the biker and his bike is 70 kg
The speed of the biker at \boldsymbol{A} is Vms^{-1}
Find the minimum value of \boldsymbol{V} if the biker is to reach \boldsymbol{B} without pedalling.
[7 marks]

8. A rough circular plate rotates horizontally about a smooth fixed vertical axis through its centre 0 A point \boldsymbol{A} on the plate moves with constant speed Vms^{-1}, where $O A$ is 1.6 m
A particle of mass $\boldsymbol{m} \mathbf{K g}$ lies on the point A on the plate.
The coefficient of friction between the particle and the plate is 0.72
Given that the particle remains at the point \boldsymbol{A}, find the greatest possible value of \boldsymbol{V}

Hence write down the greatest possible value of the angular velocity of the particle. State clearly your units for the angular velocity.
[7 marks]
9. A smooth sphere, with centre 0 and radius 4 m , is fixed.

A particle \boldsymbol{P}, of mass \boldsymbol{m}, resting on the sphere at its highest point, is given a horizontal speed of magnitude $\sqrt{g} \mathrm{~ms}^{-1}$
where \boldsymbol{g} is the magnitude of the acceleration due to gravity.
At the instant the line $\boldsymbol{O} \boldsymbol{P}$ makes an angle $\boldsymbol{\theta}$ with the upwards vertical, the speed of $P_{\text {is }}$ $v \mathrm{~ms}^{-1}$
(a) Determine an expression for $\boldsymbol{V}^{\mathbf{2}}$ in terms of \boldsymbol{g} and $\boldsymbol{\theta}$ while \boldsymbol{P} remains in contact with the sphere.
[4 marks]
(b) Find, in terms of $\boldsymbol{m}, \boldsymbol{g}$ and $\boldsymbol{\theta}$, the magnitude of the force exerted by the sphere on P. Hence calculate the value of $\operatorname{COS} \boldsymbol{\theta}$ and the value of \boldsymbol{V}^{2} when $\boldsymbol{P}_{\text {leaves the surface of the sphere. }}$
[7 marks]

END OF PAPER

