GCE AS/A level

0979/01

MATHEMATICS - FP3
 Further Pure Mathematics

A.M. WEDNESDAY, 29 June 2016

1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The curve C has polar equation

$$
r=1+2 \tan \theta, 0 \leqslant \theta \leqslant \frac{\pi}{4}
$$

Show that there is no point on C at which the tangent is perpendicular to the initial line.
2. The function f is defined by $f(x)=\cos x+\cosh x$.
(a) Show that $f^{(4)}(x)=f(x)$, where $f^{(4)}(x)$ denotes the fourth derivative of $f(x)$.
(b) (i) Show that the Maclaurin series of $f(x)$ contains only terms of the form $x^{4 n}$, where n is a non-negative integer.
(ii) Determine the first three non-zero terms of this Maclaurin series.
(c) (i) Hence find an approximate value for the positive root of the equation

$$
12(\cos x+\cosh x)-x^{4}=36
$$

Give your answer correct to three significant figures.
(ii) Show that this approximation is the value of the root correct to three significant figures.
3. Using the substitution $t=\tan \left(\frac{x}{2}\right)$, evaluate the integral

$$
\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} x}{3+5 \cos x}
$$

giving your answer in the form $\ln \left(3^{a}\right)$, where a is a rational number to be determined.
[8]
4. The function f is defined on the domain $[0, \infty)$ by

$$
f(\theta)=\cosh 2 \theta-8 \cosh \theta .
$$

Consider the equation $f(\theta)=k$, where k is a constant.
(a) Show that the equation has no real roots if $k<-9$.
(b) Solve the equation when $k=-8$, giving your answers correct to two decimal places. [3]
(c) Determine
(i) the value of k for which the equation has a repeated root,
(ii) the set of values of k for which the equation has exactly one real root.
5. The curve C has equation $y=\ln (1+\cos x)$.
(a) Show that

$$
\begin{equation*}
1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=\frac{2}{1+\cos x} \tag{4}
\end{equation*}
$$

(b) Find the length of the arc joining the points $(0, \ln 2)$ and $\left(\frac{\pi}{2}, 0\right)$ on C.

Give your answer in the form $\ln (a+b \sqrt{2})$, where a, b are positive integers.
6. The equation

$$
x^{5}+\sinh x=3
$$

has a root α close to 1 .
(a) It is suggested that iterative sequences based on the following rearrangements of the equation could be used to find the value of α.
I. $x=(3-\sinh x)^{\frac{1}{5}}$
II. $x=\sinh ^{-1}\left(3-x^{5}\right)$
(i) By evaluating appropriate derivatives, show that one of these sequences is convergent and the other is divergent.
(ii) Taking $x_{0}=1$, use the convergent sequence to find the value of α correct to three decimal places.
(b) Use the Newton-Raphson method to find the value of α correct to six decimal places.
7. The integral I_{n} is given, for $n \geqslant 0$, by

$$
I_{n}=\int_{0}^{\pi} x^{n} \sin 2 x \mathrm{~d} x
$$

(a) Show that, for $n \geqslant 2$,

$$
\begin{equation*}
I_{n}=-\frac{\pi^{n}}{2}-\frac{n(n-1)}{4} I_{n-2} . \tag{6}
\end{equation*}
$$

(b) Evaluate I_{4}, giving your answer correct to the nearest integer.

END OF PAPER

