шјес
 GCE AS/A level cbac

0981/01

MATHEMATICS M2

Mechanics
A.M. FRIDAY, 5 June 2015

1 hour 30 minutes plus your additional time allowance

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:
a 12 page answer book;
a Formula Booklet;
a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink, black ball-point pen or your usual method.

Answer ALL questions.
Take g as $9.8 \mathrm{~ms}^{-2}$.
Sufficient working must be shown to demonstrate the MATHEMATICAL method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. The vectors \underline{X} and \underline{Y} are given by

$$
\begin{aligned}
& \underline{x}=\sin \theta \underline{i}+2 \cos 2 \theta \underline{j} \\
& \underline{y}=2 \underline{i}-\underline{j}
\end{aligned}
$$

Find the values of $\boldsymbol{\theta}$ between \boldsymbol{O} and $2 \boldsymbol{T}$ such that \underline{X} is perpendicular to \underline{Y}. [6 marks]
2. An object of mass $50 \mathbf{k g}$ moves in a straight horizontal line under the action of a constant horizontal force of magnitude 1600 N acting along the line. The resistance to motion of the object is proportional to time \boldsymbol{t} seconds. At time \boldsymbol{t} seconds, the velocity of the object is $\mathbf{V} \mathrm{ms}^{-1}$ and at time $\boldsymbol{t}=2$, it is moving with velocity $41 \mathrm{~ms}^{-1}$ and acceleration $-4 \mathrm{~ms}^{-2}$.
(a) Show that \boldsymbol{V} satisfies the differential equation

$$
\frac{d v}{d t}=32-18 t
$$

[4 marks]
(b) Find an expression for \boldsymbol{V} in terms of \boldsymbol{t} and determine the times when the velocity of the object is $28 \mathrm{~ms}^{-1}$.
[6 marks]

5

3. A vehicle of mass $6000 \mathbf{k g}$ is moving up a slope inclined at an angle \boldsymbol{Q} to the horizontal,
where $\sin \alpha=\frac{6}{49}$. The vehicle's engine
exerts a constant power of $P \mathbf{P}$. The constant resistance to motion of the vehicle is $R \mathbf{N}$. At the instant the vehicle is moving with velocity

$\frac{16}{5} \mathrm{~ms}^{-1}$, its acceleration is $2 \mathrm{~ms}^{-2}$.

The maximum velocity of the vehicle is $\frac{16}{3} \mathrm{~ms}^{-1}$.

Determine the value of \boldsymbol{P} and the value of \boldsymbol{R}.
[9 marks]
4. A particle of mass $\mathbf{0 . 5} \mathbf{k g}$ is moving under the action of a single force $\mathbf{F N}$, where

$$
\underline{F}=(4 t-3) \underline{i}+\left(3 t^{2}-5 t\right) \underline{j}
$$

(a) The velocity of the particle at time $\boldsymbol{t} \mathbf{S}$

$$
\text { is } \underline{\mathrm{v}} \mathrm{~ms}^{-1} \text {. When } t=0, \underline{\mathrm{v}}=8 \underline{\mathrm{i}}-7 \underline{\mathrm{j}} \text {. }
$$

Find an expression for $\underline{\mathbf{V}}$ in terms of \boldsymbol{t}. [5 marks]
(b) When $\boldsymbol{t}=3$, the particle receives an impulse of $2 \underline{i}-9 \underline{j} \mathrm{Ns}$. Find the speed of the particle immediately after the impulse.
[5 marks]
5. The diagram shows a light spring of natural length 0.4 m and modulus of elasticity 1470 N with one end \mathbf{A} fixed and the other end attached to an object P of mass 15 kg .

Initially, \boldsymbol{P} hangs in equilibrium with the spring vertical.
(a) Determine the extension of the spring. [3 marks]

The object \boldsymbol{P} is pulled downwards so that the total length of the spring is $\mathbf{0 . 5 6} \mathrm{m}$. It is then released.
(b) Calculate the speed of \boldsymbol{P} when it is at a distance 0.45 m from A.
[8 marks]
6. A golfer hits a ball from a point \mathbf{A} with initial velocity of $35 \mathrm{~ms}^{-1}$ at an angle α above the horizontal where $\sin \alpha=0 \cdot 8$. The ball passes over a tree which is growing in front of a lake. The lake is 100 m wide, as shown in the diagram. The tree is at a horizontal distance of 17.5 m from A.

(a) Determine whether or not the golf ball will fall into the lake.
[6 marks]
(b) Find the magnitude and direction of the velocity of the ball as it passes over the tree.
[7 marks]
7. A car of mass 1200 Kg is moving in a horizontal circle of radius 80 m on a road banked at an angle of 12° to the horizontal.

When the car is moving with a constant speed of $\mathrm{V} \mathrm{Ms}^{-1}$, there is no tendency to sideslip.

Calculate the normal reaction of the road on the car and find the value of \boldsymbol{V}.
[5 marks]
8. One end of a light inextensible string of length 0.8 m is attached to a fixed point. The other end of the string is attached to a particle P of mass 3 kg . Initially \boldsymbol{P} hangs at rest with the string vertical. The particle \boldsymbol{P} is then projected horizontally with speed $5 \mathrm{~ms}^{-1}$, so that it starts to describe a vertical circle. When the string is inclined at an angle $\boldsymbol{\theta}$ to the downwards vertical, P has speed VmS^{-1} and the tension in the string is $T \mathbf{N}$.
(a) Find, in terms of $\boldsymbol{\theta}$
(i) an expression for V^{2},
(ii) an expression for \boldsymbol{T}.
[8 marks]
(b) Find the greatest possible value of $\boldsymbol{\theta}$ and briefly describe the subsequent motion of \boldsymbol{P}.
[3 marks]

