шјес
 GCE AS/A level cbac

0980/01

MATHEMATICS - M1

Mechanics
A.M. FRIDAY, 5 June 2015

1 hour 30 minutes plus your additional time allowance

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:
a 12 page answer book;
a Formula Booklet;
a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink, black ball-point pen or your usual method.

Answer ALL questions.
Take g as $9.8 \mathrm{~ms}^{-2}$.
Sufficient working must be shown to demonstrate the MATHEMATICAL method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. A man of mass $\mathbf{M k g}$ stands on the floor of a lift which is ascending with constant acceleration of $\mathbf{0 . 2} \mathrm{ms}^{-2}$. The reaction of the floor of the lift on the man is 680 N . The mass of the lift is 1800 kg . Determine the value of M and the tension in the lift cable.
[6 marks]
2. The diagram shows a body \boldsymbol{A} lying on a rough plane. The plane is inclined at an angle $\boldsymbol{\alpha}$ to the horizontal, where $\sin \alpha=\frac{5}{13}$

Body \boldsymbol{A} is connected by a light inextensible string passing over a light smooth pulley to another body B, which is hanging freely. The masses of A and B are 4 kg and 5 kg respectively.

The system is in equilibrium with \mathbf{A} on the point of moving up the plane.

Show that the coefficient of friction between the body A and the plane is $\frac{15}{16}$
[8 marks]
3. A sphere \mathbf{A}, of mass $\mathbf{3 k g}$, moving with speed $8 \mathrm{~ms}^{-1}$ on a smooth horizontal floor collides directly with another sphere B, of mass 5 kg , moving on the floor in the same direction with speed $2 \mathrm{~ms}^{-1}$. The coefficient of restitution between sphere A and sphere B is $\frac{1}{3}$
(a) Determine the speed of A and the speed of B immediately after the collision.
[7 marks]
(b) Calculate the magnitude of the impulse exerted by \boldsymbol{A} on \boldsymbol{B}
[2 marks]
4. The $\boldsymbol{X}=\boldsymbol{Y}$ plane is horizontal and four particles, of masses $5 \mathbf{~ k g}, \mathbf{2 k g}, \mathbf{3 k g}$ and $\mathbf{6 k g}$, are at points $(4,-1),(2,3),(-2,5)$ and $(-3,0)$ respectively. Find the coordinates of the centre of mass of the four particles.
[6 marks]
5. The diagram shows a plank $A B$, of mass 15 kg and length 2.8 m , being held in equilibrium with $A B$ horizontal by means of two vertical ropes, one attached to the end \boldsymbol{A} and the other attached to the end B. A man of mass 80 kg stands on the plank at point C, where $A C=0.9 \mathrm{~m}$

(a) Modelling the plank as a uniform rod, find the tensions in the ropes attached to the end \boldsymbol{A} and the end \boldsymbol{B} of the plank.

5(b) The plank is now modelled as a NON-UNIFORM rod. Given that the tension in the rope attached to A is 1.5 times the tension in the rope attached to B, determine the distance of the centre of mass of the plank from A. [5 marks]
6. A bus travels on a straight horizontal road. It leaves bus stop \boldsymbol{A} starting from rest and accelerates at a constant rate for 10 S until it reaches a speed of $20 \mathrm{~ms}^{-1}$. It then continues to travel at this constant speed and, T seconds after it stops accelerating, it passes a point B.
(a) Sketch a velocity-time graph for the motion of the bus between \boldsymbol{A} and \boldsymbol{B}.
[3 marks]
(b) Find the acceleration of the bus.
[2 marks]
(c) Determine an expression for the distance between A and B in terms of T.
[3 marks]
(d) A car leaves $\mathbf{A} 5$ seconds after the bus has left. It starts from rest and travels with a constant acceleration of magnitude $2 \mathrm{~ms}^{-2}$. Given that the car overtakes the bus at the point B, find the distance between \boldsymbol{A} and \boldsymbol{B}.
[5 marks]

9

7. The diagram opposite shows four horizontal forces of magnitude $P \mathbf{N}, Q \mathbf{N}, 25 \mathbf{N}$ and 80 N acting at a point.

Given that the forces are in equilibrium, calculate the value of \boldsymbol{P} and the value of \boldsymbol{Q}. Give your answers correct to one decimal place. [7 marks]
8. An object is projected vertically downwards from a point A with an initial speed of $2.1 \mathrm{~ms}^{-1}$ towards a horizontal surface. The point \boldsymbol{A} is at a height of 4 m above the surface. The coefficient of restitution between the object and the surface is $\frac{4}{7}$
(a) Show that the speed of the object immediately after it has rebounded from the surface is $5.2 \mathrm{~ms}^{-1}$.
[5 marks]
(b) Determine the smallest number of bounces after which the speed of the object immediately after rebound is less than $1 \mathrm{~ms}^{-1}$.
[2 marks]

9. The diagram opposite shows a lamina $A B C D E$ which is made of a uniform material.

> It consists of a rectangular piece $A B D E$ together with a triangular piece $B C D$.

A circular section, with centre O, is removed from $A B D E$. In triangle $B C D$, $B C=C D$.

The dimensions, in CM, are as shown in the diagram.

Find the distances of the centre of mass of the lamina from $A E$ and $A B$.
[7 marks]

END OF PAPER

