GCE AS/A level

0979/01
MATHEMATICS - FP3
Further Pure Mathematics

A.M. WEDNESDAY, 24 June 2015

1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. (a) Express $5 \cosh \theta+3 \sinh \theta$ in the form $r \cosh (\theta+\alpha), r>0$, where the values of r and α are to be found.
(b) Hence solve the equation

$$
\begin{equation*}
5 \cosh \theta+3 \sinh \theta=10 \tag{4}
\end{equation*}
$$

2. Evaluate the integral

$$
\int_{0}^{\frac{\pi}{2}} \mathrm{e}^{2 x} \cos x \mathrm{~d} x
$$

giving your answer in the form $\frac{a e^{\pi}+b}{5}$, where a and b are integers to be found.
3. The function f is defined by

$$
f(x)=3 x^{4}-4 x^{3}-3 x^{2}-6 x+4 .
$$

You are given that the graph of f has exactly one stationary point whose x-coordinate is denoted by α.
(a) Show that
(i) α lies between 1.4 and $1 \cdot 6$,
(ii) $\quad \alpha=\left(\frac{2 \alpha^{2}+\alpha+1}{2}\right)^{\frac{1}{3}}$.
(b) It is suggested that the following sequence could be used to determine the value of α.

$$
x_{n+1}=\left(\frac{2 x_{n}^{2}+x_{n}+1}{2}\right)^{\frac{1}{3}} ; \quad x_{0}=1.5
$$

(i) By considering an appropriate derivative, show that this sequence is convergent.
(ii) Use this sequence to find the value of α correct to three decimal places.
4. The function f is defined by

$$
f(x)=\ln (1+\cosh x) .
$$

(a) Show that

$$
\begin{equation*}
f^{\prime \prime}(x)=\frac{1}{1+\cosh x} . \tag{3}
\end{equation*}
$$

(b) Determine the Maclaurin series for $f(x)$ as far as the term in x^{4}.
5. The curve C has parametric equations

$$
x=t+\sin t, \quad y=1-\cos t \quad(0 \leqslant t \leqslant \pi)
$$

(a) Show that

$$
\begin{equation*}
\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}=4 \cos ^{2} \frac{1}{2} t \tag{3}
\end{equation*}
$$

(b) (i) Find the arc length of C.
(ii) Find the curved surface area of the solid generated when C is rotated through an angle 2π about the x-axis.
6. (a) Show that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(4-x^{2}\right)^{\frac{3}{2}}\right)=-3 x\left(4-x^{2}\right)^{\frac{1}{2}} . \tag{1}
\end{equation*}
$$

The integral I_{n} is defined, for $n \geqslant 0$, by

$$
I_{n}=\int_{0}^{2} x^{n} \sqrt{4-x^{2}} \mathrm{~d} x
$$

(b) Show that, for $n \geqslant 2$,

$$
\begin{equation*}
I_{n}=\left(\frac{4(n-1)}{n+2}\right) I_{n-2} \tag{5}
\end{equation*}
$$

(c) (i) Show that

$$
I_{0}=\pi
$$

(ii) Evaluate I_{4}, giving your answer in the form $p \pi$ where p is a positive integer.

TURN OVER

7.

The above diagram shows the curve C with polar equation

$$
r=\tan \left(\frac{\theta}{2}\right), \quad 0 \leqslant \theta \leqslant \frac{\pi}{2}
$$

(a) Show that the θ-coordinate of the point A at which the tangent to C is perpendicular to the initial line satisfies the equation

$$
2 \tan \theta \tan \left(\frac{\theta}{2}\right)=1+\tan ^{2}\left(\frac{\theta}{2}\right)
$$

Hence find the polar coordinates of A.
(b) Find the area of the shaded region enclosed between C and the line $\theta=\frac{\pi}{2}$.

END OF PAPER

