$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

MATHEMATICS
 AS/Advanced

JANUARY 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2014 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Unit Page
C1 1
C2 6
C3 11
M1 17
S1 26
FP1 29

Mathematics C1 January 2014

Solutions and Mark Scheme

Final Version

1.

(a)
(i) Gradient of $A B=\underline{\text { increase in } y}$
(ii) Use of gradient $L_{1} \times$ gradient $A B=-1$

A correct method for finding the equation of L_{1} using candidate's gradient for L_{1}
Equation of $L_{1}: \quad y-1=2 / 3(x-4) \quad$ (or equivalent)
(f.t. candidate's gradient for $A B$)
(b) (i) An attempt to solve equations of L_{1} and L_{2} simultaneously M1 $x=-2, y=-3$
(convincing)
(ii) A correct method for finding the coordinates of the mid-point of $A C$
Mid-point of $A C$ has coordinates (2, -2.5) (c.a.o.) A1
(iii) A correct method for finding the length of $A B(B C) \quad$ M1
$A B=\sqrt{ } 13 \quad$ A1
$B C=\sqrt{ } 52 \quad$ (or equivalent) A1
A correct method for finding the area of triangle $A B C \quad \mathrm{~m} 1$
Area of triangle $A B C=13$
(c.a.o.)

A1
2. $\quad \frac{3 \sqrt{ } 3-2 \sqrt{ } 5}{2 \sqrt{3}+\sqrt{ } 5}=\frac{(3 \sqrt{ } 3-2 \sqrt{ } 5)(2 \sqrt{ } 3-\sqrt{5})}{(2 \sqrt{ } 3+\sqrt{ } 5)(2 \sqrt{ } 3-\sqrt{5})}$

Numerator: $\quad 6 \times 3-3 \times \sqrt{ } 3 \times \sqrt{ } 5-4 \times \sqrt{ } 5 \times \sqrt{ } 3+10 \quad$ A1
Denominator: $12-5$ A1
$\underline{3 \sqrt{3}-2 \sqrt{ } 5}=4-\sqrt{ } 15 \quad$ (c.a.o.) A1
$2 \sqrt{3}+\sqrt{5}$
Special case
If M1 not gained, allow B1 for correctly simplified numerator or denominator
following multiplication of top and bottom by $2 \sqrt{ } 3+\sqrt{ } 5$
3. An attempt to differentiate, at least one non-zero term correct
$\underline{\mathrm{d} y}=20 \times-1 \times x^{-2}+4 x \quad \mathrm{~A} 1$
$\mathrm{d} x$
An attempt to substitute $x=2$ in candidate's derived expression for $\underline{\mathrm{d} y} \mathrm{~m} 1$
$\mathrm{d} x$
Value of $\underline{\mathrm{d} y}$ at $P=3$
(c.a.o.) A1
$\mathrm{d} x$
Gradient of normal $=\frac{-1}{\text { candidate's derived value for } \frac{\mathrm{d} y}{\mathrm{~d} x}}$
Equation of normal to C at $P: \quad y-7=-\frac{1}{3}(x-2) \quad$ (or equivalent)
(f.t. candidate's value for $\underline{\mathrm{d} y}$ provided all three method marks are awarded) $\mathrm{d} x$
4. Either $p=0.8$ or a sight of $(x+0.8)^{2}$

A convincing argument to show that the value 25 is correct
$x^{2}+1 \cdot 6 x-24 \cdot 36=0 \Rightarrow(x+0 \cdot 8)^{2}=25 \quad$ (f.t. candidate's value for p) M1
$x=4.2 \quad$ (f.t. candidate's value for p) A1
$x=-5 \cdot 8$
(f.t. candidate's value for p) A1
5. (a) $\quad(1+\sqrt{ } 6)^{5}=(1)^{5}+5(1)^{4}(\sqrt{6})+10(1)^{3}(\sqrt{6})^{2}+10(1)^{2}(\sqrt{ } 6)^{3}$

$$
+5(1)(\sqrt{6})^{4}+(\sqrt{6})^{5} \quad \text { (five or six terms correct) } \quad \text { B2 }
$$

(If B2 not awarded, award B1 for four correct terms)
$(1+\sqrt{ } 6)^{5}=1+5 \sqrt{ } 6+60+60 \sqrt{ } 6+180+36 \sqrt{ } 6$
(six terms correct) B2
(If B2 not awarded, award B1 for four or five correct terms)

$$
(1+\sqrt{6})^{5}=241+101 \sqrt{6} \quad \text { (f.t. one error) }
$$

(b) ${ }^{n} C_{2} \times 3^{k}=495 \quad(k=1,2) \quad$ M1

$$
\text { Either } 9 n^{2}-9 n-990=0 \text { or } n^{2}-n-110=0 \text { or } n(n-1)=110
$$

$$
n=11 \quad \text { (c.a.o.) } \mathrm{A}
$$ A1

6. An expression for $b^{2}-4 a c$, with at least two of a, b, c correct M1
$b^{2}-4 a c=8^{2}-4 \times(2 k-3) \times(2 k+3) \quad$ A1
Putting $b^{2}-4 a c<(\leq) 0 \quad \mathrm{~m} 1$
$100-16 k^{2}<0 \quad$ (o.e.) (c.a.o.) A1
Finding critical values $k=-5 / 2, k=5 / 2$
(o.e.) (f.t. candidate's values for m, n) B1
$k<-5 / 2$ or $5 / 2<k \quad$ (o.e.) (f.t. only critical values of $-a$ and a) B1
Each of the following errors earns a final B0
the use of non-strict inequalities
the use of the word 'and' instead of the word 'or'
7. (a)

Concave down curve and y-coordinate of maximum $=6 \quad$ B1
x-coordinate of maximum $=5$
B1
Both points of intersection with x-axis
(b) $\begin{aligned} & y=f(-2 x) \\ & \text { (If B2 not awarded, award B1 for either } y=f(-1 / 2 x) \text { or } y=f(2 x))\end{aligned}$
(If B2 not awarded, award B1 for either $y=f\left(-\frac{1}{2} x\right)$ or $y=f(2 x)$)
8. (a) $y+\delta y=7(x+\delta x)^{2}-6(x+\delta x)-3$

Subtracting y from above to find δy
$\delta y=14 x \delta x+7(\delta x)^{2}-6 \delta x$
Dividing by δx and letting $\delta x \rightarrow 0$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{limit}_{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=14 x-6$
(c.a.o.) A1
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=a \times \frac{4}{3} \times x^{1 / 3}+24 \times \frac{1}{2} \times x^{-1 / 2}$

B1, B1
Attempting to substitute $x=64$ in candidate's expression for $\underline{\mathrm{d} y}$ and d x
putting expression equal to $\underline{11} 2$
(The M1 is only awarded if at least one B1 has been awarded)

$$
a=\underline{3}
$$

(c.a.o.) A1
9. (a) Use of $f(-3)=-39$
$-27 a+117+30-24=-39 \Rightarrow a=6 \quad$ (convincing) A1
(b) Attempting to find $f(r)=0$ for some value of r M1 $f(-2)=0 \Rightarrow x+2$ is a factor A1 $f(x)=(x+2)\left(6 x^{2}+a x+b\right)$ with one of a, b correct M1 $f(x)=(x+2)\left(6 x^{2}+x-12\right) \quad$ A1 $f(x)=(x+2)(2 x+3)(3 x-4)$ (f.t. only $6 x^{2}-x-12$ in above line) A1 $x=-2,-\frac{3}{2}, 4 / 3 \quad$ (f.t. for factors $2 x \pm 3,3 x \pm 4$) A1 Special case
Candidates who, after having found $x+2$ as one factor, then find just one of the remaining factors by using e.g. the factor theorem, are awarded B1 for the final 4 marks
10. (a) $\quad \underline{\mathrm{d} y}=-6 x^{2}+24 x-18$
$\mathrm{d} x$
Putting derived $\underline{\mathrm{d} y}=0$
$x=1,3 \quad$ (both correct) (f.t. candidate's $\underline{\mathrm{d} y}$) A1
Stationary points are $(1,-3)$ and $(3,5)$ (both correct) (c.a.o) A1 A correct method for finding nature of stationary points yielding either $(1,-3)$ is a minimum point or $(3,5)$ is a maximum point (f.t. candidate's derived values) M1 Correct conclusion for other point
(f.t. candidate's derived values) A1
(b)

Graph in shape of a negative cubic with two turning points M1
Correct marking of both stationary points (f.t. candidate's derived maximum and minimum points) A1
(c) Use of both $k=-3, k=5$ to find the range of values for k
(f.t. candidate's y-values at stationary points) M1
$-3<k<5 \quad$ (f.t. candidate's y-values at stationary points) A1

Mathematics C2 January 2014

Solutions and Mark Scheme
 Final Version

1.

2	2
$2 \cdot 5$	1.843908891
3	1.732050808
3.5	1.647508942
4	1.58113883

$4 \quad 1.58113883$ (5 values correct) B2 (If B2 not awarded, award B1 for either 3 or 4 values correct)

```
Correct formula with \(h=0.5\)
\(I \approx \frac{0 \cdot 5}{2} \times\{2+1 \cdot 58113883+2(1 \cdot 843908891+1 \cdot 732050808+1 \cdot 647508942)\}\)
\(I \approx 14.02807611 \times 0.5 \div 2\)
\(I \approx 3.507019028\)
\(I \approx 3.507 \quad\) (f.t. one slip) A1
```

Special case for candidates who put $h=0.4$
22
$2.4 \quad 1.870828693$
$2.8 \quad 1.772810521$
$3.2 \quad 1.695582496$
$3.6 \quad 1.632993162$
$4 \quad 1 \cdot 58113883$
(all values correct) B1
Correct formula with $h=0.4 \quad$ M1
$I \approx \frac{0 \cdot 4}{2} \times\{2+1 \cdot 58113883+2(1 \cdot 870828693+1 \cdot 772810521+$
$I \approx 17.52556857 \times 0.4 \div 2$
$I \approx 3.505113715$
$I \approx 3.505$ (f.t. one slip) A1
Note: Answer only with no working earns 0 marks
2. (a) $8 \cos ^{2} \theta-7\left(1-\cos ^{2} \theta\right)=4 \cos \theta-3$

$$
\text { (correct use of } \sin ^{2} \theta=1-\cos ^{2} \theta \text {) M1 }
$$

An attempt to collect terms, form and solve quadratic equation in $\cos \theta$, either by using the quadratic formula or by getting the expression into the form $(a \cos \theta+b)(c \cos \theta+d)$, with $a \times c=$ candidate's coefficient of $\cos ^{2} \theta$ and $b \times d=$ candidate's constant
$15 \cos ^{2} \theta-4 \cos \theta-4=0 \Rightarrow(5 \cos \theta+2)(3 \cos \theta-2)=0$
$\Rightarrow \cos \theta=\frac{2}{3}, \quad \cos \theta=\frac{-2}{5}$
$\theta=48 \cdot 19^{\circ}, 311 \cdot 81^{\circ}$
B1
$\theta=113 \cdot 58^{\circ}, 246 \cdot 42^{\circ}$
B1 B1
Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range. $\cos \theta=+,-$, f.t. for 3 marks, $\cos \theta=-,-$, f.t. for 2 marks $\cos \theta=+,+$, f.t. for 1 mark
(b) $X=114^{\circ}$

B1
$Y-Z=20^{\circ}$
B1
$114^{\circ}+Y+Z=180^{\circ} \quad$ (f.t. only for an obtuse value for X) M1
$Y=43^{\circ}, Z=23^{\circ}$
(f.t. one error)

A1
3. (a) $a+2 d+a+7 d=0$

B1
$a+4 d+a+6 d+a+9 d=22$ B1
An attempt to solve the candidate's linear equations simultaneously by eliminating one unknown M1
$a=-18, d=4$ (both values)
(c.a.o.) A1
(b) $S_{n}=\frac{n}{2}[2 \times 9+(n-1) \times 2]$ B1
$S_{2 n}=\frac{2 n}{2}[2 \times 9+(2 n-1) \times 2]$
B1
$\frac{2 n}{2}[2 \times 9+(2 n-1) \times 2]=k \times \frac{n}{2}[2 \times 9+(n-1) \times 2] \quad\left(k=\mathbf{3},{ }^{1} / 3\right)$
(f.t. candidate's quadratic expressions for $S_{2 n}, S_{n}$ provided at least one of the first two B marks is awarded)
An attempt to solve this equation including dividing both sides by n to reach a linear equation in n.
4. (a) $S_{n}=a+a r+\ldots+a r^{n-1}$ (at least 3 terms, one at each end) B1
$r S_{n}=a r+\ldots+a r^{n-1}+a r^{n}$
$S_{n}-r S_{n}=a-a r^{n} \quad$ (multiply first line by r and subtract) M1 $(1-r) S_{n}=a\left(1-r^{n}\right)$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
(b)
(i) $a r^{3}=-108$ and $a r^{6}=4$

$$
r^{3}=\frac{4}{-108} \quad \text { (o.e.) }
$$

$r=-1 / 3$
(c.a.o.) A1
(ii) $\quad a \times(-1 / 3)^{3}=-108 \Rightarrow a=2916$

$$
S_{\infty}=\frac{2916}{1-(-1 / 3)} \quad \text { (use of formula for sum to infinity) }
$$

(f.t. candidate's derived values for r and a) M1
$S_{\infty}=2187$ (c.a.o.)

A1
5. (a) (i) Either: $5^{2}=3^{2}+x^{2}-2 \times 3 \times x \times \cos A D B \quad$ (o.e.) Or: $\quad 6^{2}=1^{2}+x^{2}-2 \times 1 \times x \times \cos A D C \quad$ (o.e.)
(at least one correct use of cos rule) M1 (convincing) A1
$\cos A D B=\frac{x^{2}-16}{6 x}$
$\cos A D C=\frac{x^{2}-35}{2 x}$
(ii) $\frac{x^{2}-16}{6 x}+\frac{x^{2}-35}{2 x}=0$
(f.t. candidate's derived expression for $\cos A D C$)
$4 x^{2}=121 \quad$ (f.t. candidate's derived expression for $\cos A D C$ providing it is of similar form)
$x=5 \cdot 5$
(convincing)
(c.a.o.)
(b) $A D B=64.42^{\circ}$

Area of triangle $A D B=\frac{5 \cdot 5 \times 3 \times \sin 64.42^{\circ}}{2}$
(f.t. candidate's derived value for angle $A D B$)

Area of triangle $A D B=7.44 \mathrm{~cm}^{2}$
(c.a.o.)

A1
6.
(a) $5 \times \frac{x^{-2}}{-2}-2 \times \frac{x^{4 / 3}}{4 / 3}-4 x+c$

B1, B1, B1 (-1 if no constant term present)
(b) Area $=\int_{2}^{6}\left(3 x^{2}-\underline{1} x^{3}\right) d x$
(use of integration)
M1
$\begin{array}{lrl}\frac{3 x^{3}}{3}-\frac{1}{4 \times 4} x^{4} & \text { (correct integration) } & \text { B1 } \\ \text { Area }=(216-81)-(8-1) & \end{array}$
(correct method for substituting limits) m1
Area $=128$ (c.a.o.) A1
7. (a) Let $p=\log _{a} x$

Then $x=a^{p} \quad$ (relationship between log and power) B1
$x^{n}=a^{p n}$
(the laws of indices) B1
$\therefore \log _{a} x^{n}=p n \quad$ (relationship between \log and power)
$\therefore \log _{a} x^{n}=p n=n \log _{a} x \quad$ (convincing) B1
(b) Either:
$(5-4 x) \log _{10} 7=\log _{10} 11$
(taking logs on both sides and using the power law) M1
$x=5 \log _{10} 7-\log _{10} \underline{11}$
$4 \log _{10} 7$
$x=0.942$
(f.t. one slip, see below) A1

Or:
$5-4 x=\log _{7} 11 \quad$ (rewriting as a \log equation) M1
$x=\frac{5-\log _{7} 11}{4}$
$x=0.942$
(f.t. one slip, see below) A1

Note: an answer of $x=-0.942$ from $x=\underline{\log }_{10} \frac{11-5 \log _{10} 7}{4 \log _{10} 7}$ earns M1 A0 A1
an answer of $x=1.558$ from $x=\underline{\log }_{10} \frac{11+5 \log _{10} 7}{4 \log _{10} 7}$ earns M1 A0 A1

Note: Answer only with no working shown earns 0 marks
(c) $\log _{8} x=-\frac{1}{3} \Rightarrow x=8^{-1 / 3}$
$x=8^{-1 / 3} \Rightarrow x=\frac{1}{2}$
8.
(a) (i) $\quad A(2,-4)$
(ii) Gradient $A P=\underline{\text { inc in } y}$

Gradient $A P=\frac{(-7)-(-4)}{6-2}=-\underline{3}$
(f.t. candidate's coordinates for A) A1

Use of $m_{\text {tan }} \times m_{\text {rad }}=-1 \quad$ M1
Equation of tangent is:
$y-(-7)=\frac{4}{3}(x-6) \quad$ (f.t. candidate's gradient for $A P$) A1
(b) An attempt to substitute $(x+3)$ for y in the equation of the circle and form quadratic in x
$x^{2}+(x+3)^{2}-4 x+8(x+3)-5=0 \Rightarrow 2 x^{2}+10 x+28=0$
An attempt to calculate value of discriminant
m1
Discriminant $=100-224<0 \Rightarrow$ no points of intersection
(f.t. one slip)

A1
9. Denoting $A \hat{O} B$ by θ,

Area of sector $A O B=\frac{1}{2} \times 7^{2} \times \theta$
Area of sector $C O D=\frac{1}{2} \times 4^{2} \times \theta \quad$ (at least one correct) M1
$\frac{1}{2} \times 7^{2} \times \theta-\frac{1}{2} \times 4^{2} \times \theta=23 \cdot 1$
$\frac{1}{2} \quad \frac{1}{2} \quad$ (f.t candidate's expressions for the areas of the sectors) m 1
$\theta=1 \cdot 4$
(c.a.o.)

A1
$C D=5.6 \mathrm{~cm}, A B=9.8 \mathrm{~cm} \quad$ (both values, f.t candidate's value for θ) B1
Use of perimeter of $A C D B=A C+C D+D B+B A \quad$ M1
Perimeter of $A C D B=21.4 \mathrm{~cm}$ (c.a.o.) A1
10. (a) $t_{2}=\frac{3}{4} \quad$ B1
$t_{3}=-\frac{1}{3}, t_{4}=4$
B1
$\begin{array}{ll}\text { (b) The sequence repeats itself every third term } & \text { B1 } \\ t_{50}=\frac{3}{4} & \mathrm{~B} 1\end{array}$

Mathematics C3 January 2014

Solutions and Mark Scheme

Final Version
1.
(a) 0

0
$\pi / 12$
$0 \cdot 071796769$
$\pi / 6$
0.333333333
$\pi / 4$
1
$\pi / 3 \quad 3$
(5 values correct)
B2
(If B2 not awarded, award B1 for either 3 or 4 values correct)
Correct formula with $h=\pi / 12$
$I \approx \frac{\pi / 12}{3} \times\{0+3+4(0.071796769+1)+2(0.333333333)\}$
$I \approx 7.953853742 \times(\pi / 12) \div 3$
$I \approx 0.69410468$
$I \approx 0.6941 \quad$ (f.t. one slip)
Note: Answer only with no working shown earns 0 marks
(b)

Note: Answer only with no working shown earns 0 marks
2. (a) Choice of x satisfying $75^{\circ} \leq x<90^{\circ}$ and one correct evaluation
(b) $15\left(1+\cot ^{2} \theta\right)+2 \cot \theta=23$

$$
\text { (correct use of } \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta \text {) }
$$

An attempt to collect terms, form and solve quadratic equation in $\cot \theta$, either by using the quadratic formula or by getting the expression into the form $(a \cot \theta+b)(c \cot \theta+d)$,
with $a \times c=$ candidate's coefficient of $\cot ^{2} \theta$ and $b \times d=$ candidate's constant
$15 \cot ^{2} \theta+2 \cot \theta-8=0 \Rightarrow(5 \cot \theta+4)(3 \cot \theta-2)=0$
$\Rightarrow \cot \theta=\frac{2}{3}, \cot \theta=-\frac{4}{5}$
$\Rightarrow \tan \theta=\frac{3}{2}, \tan \theta=-\frac{5}{4}$
(c.a.o.) A1
$\theta=56.31^{\circ}, 236.31^{\circ}$
B1
$\theta=128.66^{\circ}, 308.66^{\circ}$
Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.
$\tan \theta=+,-$, f.t. for 3 marks, $\tan \theta=-$, - , f.t. for 2 marks $\tan \theta=+,+$, f.t. for 1 mark
3. $\underline{\mathrm{d}}\left(x^{3}\right)=3 x^{2} \quad \underline{\mathrm{~d}}(3)=0$

B1
$\mathrm{d} x \quad \mathrm{~d} x$
$\begin{array}{ll}\frac{\mathrm{d}}{\mathrm{d}}\left(-2 x^{2} y\right)=-2 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}-4 x y & \text { B1 }\end{array}$
$\underline{\mathrm{d}}\left(3 y^{2}\right)=6 y \underline{\mathrm{~d} y} \quad$ B1
$\mathrm{d} x \quad \mathrm{~d} x$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-4}{-14}=\frac{2}{7} \quad$ (c.a.o.) B1
4. (a) $\frac{\mathrm{d} x}{\mathrm{~d} t}=6 t^{2}$
(b) $\underline{\mathrm{d}}[\underline{\mathrm{d}} \boldsymbol{\}}]=2+12 t^{2}$ B1
$\mathrm{d} t(\mathrm{~d} x)$
Use of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \div \frac{\mathrm{d} x}{\mathrm{~d} t}$
M1

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{2+12 t^{2}}{6 t^{2}}
$$

(c.a.o.) A1
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 \Rightarrow 2+12 t^{2}=12 t^{2}(\Rightarrow 2=0) \Rightarrow$ no such t exists \quad E1
(c) Use of $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}$

M1
$\frac{\mathrm{d} y}{\mathrm{~d} t}=12 t^{3}+24 t^{5} \quad$ (f.t. candidate's expression for $\frac{\mathrm{d} x}{\mathrm{~d} t}$
Use of a valid method of integration to find y m1
$y=3 t^{4}+4 t^{6}(+c) \quad$ (f.t. one error in candidate's $\frac{\mathrm{d} y}{\mathrm{~d} t}$
A1
$y=3 t^{4}+4 t^{6}+3$
(c.a.o.)

A1
5. $x_{0}=1$
$x_{1}=0.612372435 \quad\left(x_{1}\right.$ correct, at least 5 places after the point)
$x_{2}=0.62777008$
$x_{3}=0.627136142$
$x_{4}=0.627162204=0.62716 \quad\left(x_{4}\right.$ correct to 5 decimal places $)$
B1
Let $h(x)=x^{3}+7 x^{2}-3$
An attempt to check values or signs of $h(x)$ at $x=0.627155$,
$x=0.627165$
$h(0.627155)=-6.15 \times 10^{-5}<0, h(0.627165)=3.81 \times 10^{-5}>0$
Change of sign $\Rightarrow \alpha=0.62716$ correct to five decimal places
6. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=10 \times\left(5 x^{3}-x\right)^{9} \times f(x)$ $(f(x) \neq 1)$

M1

$$
\frac{\mathrm{d} y}{1}=10\left(5 x^{3}-x\right)^{9}\left(15 x^{2}-1\right)
$$

$$
\mathrm{d} x
$$

(b) Either $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{f(x)}{\sqrt{1-\left(x^{3}\right)^{2}}}$ (including $f(x)=1$) or $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2}}{\sqrt{1-x^{5}}}$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2}}{\sqrt{1-x^{6}}}
$$

(c) $\quad \underline{\mathrm{d} y}=x^{4} \times f(x)+\ln (2 x) \times g(x)$
$\mathrm{d} x$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{4} \times f(x)+\ln (2 x) \times g(x) \quad\left(\right.$ either $f(x)=2 \times \frac{1}{2 x}$ or $\left.g(x)=4 x^{3}\right)$
$\underline{\mathrm{d} y}=x^{3}+4 x^{3} \ln (2 x) \quad$ (all correct) A1
$\mathrm{d} x$
(d) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(2 x+3)^{6} \times k \times \mathrm{e}^{4 x}-\mathrm{e}^{4 x} \times 6 \times(2 x+3)^{5} \times m}{\left[(2 x+3)^{6}\right]^{2}}$ with either $k=\mathbf{4}, m=\mathbf{2}$ or $k=4, m=1$ or $k=1, m=2$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(2 x+3)^{6} \times 4 \times \mathrm{e}^{4 x}-\mathrm{e}^{4 x} \times 6 \times(2 x+3)^{5} \times 2}{\left[(2 x+3)^{6}\right]^{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8 x \mathrm{e}^{4 x}}{(2 x+3)^{7}}$
(correct numerator) A1
(correct denominator) A1
7. (a)
(i) $\begin{array}{lll}\int \mathrm{e}^{5 x / 6} \mathrm{~d} x=k \times \mathrm{e}^{5 x / 6}+c & \left(k=1,5 / 6,{ }^{6} / 5\right) & \text { M1 } \\ \int \mathrm{e}^{5 x / 6} \mathrm{~d} x=6 / 5 \times \mathrm{e}^{5 x / 6}+c & & \mathrm{~A} 1\end{array}$
(ii) $\quad \int_{j}(8 x+1)^{1 / 3} \mathrm{~d} x=\frac{k \times(8 x+1)^{4 / 3}}{4 / 3}+c \quad(k=1,8,1 / 8) \quad$ M1 $\int(8 x+1)^{1 / 3} \mathrm{~d} x={ }^{3} / 32 \times(8 x+1)^{4 / 3}+c$
(iii) $\int_{j} \sin (1-x / 3) \mathrm{d} x=k \times \cos (1-x / 3)+c$
M1

$$
\int \sin (1-x / 3) d x=3 \times \cos (1-x / 3)+c
$$

Note: The omission of the constant of integration is only penalised once.
(b)
$\int \frac{1}{4 x-1} \mathrm{~d} x=k \times \ln (4 x-1)$
$\int \frac{1}{4 x-1} \mathrm{~d} x=1 / 4 \times \ln (4 x-1)$ $(k=1,4,1 / 4)$ M1
A1
$k \times[\ln (4 a-1)-\ln 7]=0.284$

$$
\left(k=1,4, \frac{1}{4}\right) \quad \mathrm{m} 1
$$

$\frac{4 a-1}{7}=\mathrm{e}^{1.136}$
$a=5$.
(f.t. $a=2 \cdot 6$ for $k=1$ and $a=2 \cdot 1$ for $k=4$)
$\begin{array}{lll}\text { 8. } & & \text { M1 } \\ \text { Trying to solve } 3 x+4=2(x-3) & & \text { M1 } \\ x=-10, x=0 \cdot 4 & \text { (c.a.o.) } & \text { A1 }\end{array}$

Alternative mark scheme

$(3 x+4)^{2}=[2(x-3)]^{2}$	(squaring both sides)	M1
$5 x^{2}+48 x-20=0$	(at least two coefficients correct)	A1
$x=-10, x=0.4$	(c.a.o.)	A1

9. (a) $y-1=\frac{2}{\sqrt{3 x-5}}$

An attempt to isolate $3 x-5$ by crossmultiplying and squaring

$$
\begin{aligned}
& x=\frac{1}{3}\left(5+\frac{4}{(y-1)^{2}}\right) \\
& f^{-1}(x)=\frac{1}{3}\left(5+\frac{4}{(x-1)^{2}}\right)
\end{aligned}
$$

(f.t. one slip in candidate's expression for x)
(b) $\quad D\left(f^{-1}\right)=(1,1 \cdot 5]$

B1 B1
10. (a) $g^{\prime}(x)=\frac{4}{(x+1)^{2}}$
$g^{\prime}(x)>0 \Rightarrow g$ is an increasing function
B1
(b) $\quad R(g)=(0,4)$ B1 B1
(c) $\quad D(f g)=(-\infty,-2)$ B1
$R(f g)=(\sqrt{ } 5, \sqrt{ } 21)$
(f.t. candidate's $R(g)$) B1
(d) (i) $\quad f g(x)=\left((\underline{-4})^{2}+5\right)^{1 / 2}$ B1
(ii) Putting expression for $f g(x)$ equal to 3 and squaring both sides

M1
$\left(\frac{-4}{x+1}\right)^{2}=4 \quad$ (o.e.) (c.a.o.) A1
$x=-3,1 \quad$ (two values, f.t. one slip) A1
Rejecting $x=1$ and thus $x=-3 \quad$ (c.a.o.) A1

Mathematics M1 January 2014
Solutions and Mark Scheme
Final Version

| Q | Solution | Mark | Notes |
| :--- | :---: | :---: | :---: | :---: |
| 1(a) | | | |

Q	Solution			Mark
3			Notes	

Q	Solution		Mark
4(a)(i)		Notes	

Q	Solution	Mark	Notes
5	Resolve in Q direction $\begin{aligned} Q & =9 \sin 60^{\circ} \\ & =9 \times \frac{\sqrt{3}}{2}=\underline{7.794} \end{aligned}$ Resolve in P direction $\begin{aligned} & P+9 \cos 60^{\circ}=6 \\ & P=6-9 \times 0.5 \\ & P=\underline{1.5} \end{aligned}$	M1 A1 M1 A1 A1	equation required cao equation required, all forces correct equation cao

Q	Solution		Mark	Notes
7(a)				

Final Version

\begin{tabular}{|c|c|c|c|}
\hline Ques \& Solution \& Mark \& Notes \\
\hline \begin{tabular}{l}
1(a)(i) \\
(ii) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
P(A \cap B) \& =P(B) P(A \mid B) \\
\& =0.08 \\
P(B \mid A) \& =\frac{P(A \cap B)}{P(A)} \\
\& =0.16
\end{aligned}
\] \\
Considering any valid expression, eg \(P(A \cap B)>0\), \(P(A \mid B)>0, P(B \mid A)>0, P(A \cup B)<P(A)+P(B)\), the events are not mutually exclusive
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1
B1
\end{tabular} \& \begin{tabular}{l}
Award M1 for using formula \\
Award M1 for using formula FT their \(P(A \cap B)\) unless independence assumed \\
FT previous work Conclusion must be justified
\end{tabular} \\
\hline 2(a)

(b)

(c) \& \[
$$
\begin{aligned}
& \mathrm{P}(1 \text { of each })= \\
& \begin{aligned}
\frac{6}{12} \times \frac{4}{11} \times \frac{2}{10} & \times 6 \text { or }\binom{6}{1} \times\binom{ 4}{1} \times\binom{ 2}{1} \div\binom{ 12}{3} \\
& =\frac{12}{55} \quad(0.218) \\
\mathrm{P}(3 \mathrm{Els}) & =\frac{6}{12} \times \frac{5}{11} \times \frac{4}{10} \text { or }\binom{6}{3} \div\binom{ 12}{3} \\
& =\frac{1}{11} \quad(0.091) \\
\mathrm{P}(3 \text { Gala }) & =\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} \text { or }\binom{4}{3} \div\binom{ 12}{3} \\
& =\frac{1}{55}(0.018) \text { si } \\
\mathrm{P}(3 \text { the same }) & =\frac{1}{11}+\frac{1}{55}=\frac{6}{55}
\end{aligned} \quad \text { (0.109) }
\end{aligned}
$$

\] \& | M1A1 |
| :--- |
| A1 |
| M1 |
| A1 |
| B1 |
| M1A1 | \& | M1A0 if 6 omitted or incorrect factor used |
| :--- |
| FT previous values |

\hline | 3(a) |
| :--- |
| (b) |
| (c) | \& \[

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{C} \text { wins } 1^{\text {st }} \text { shot }\right)=\mathrm{P}(\mathrm{R} \text { misses }) \mathrm{P}(\mathrm{C} \text { hits }) \\
&=0.7 \times 0.4 \\
&=0.28 \\
& \mathrm{P}\left(\mathrm{C} \text { wins } 2^{\text {nd }} \text { shot }\right)=0.7 \times 0.6 \times 0.7 \times 0.4 \\
&=0.42 \times 0.28 \quad(\mathrm{k}=0.42) \\
& \mathrm{P}(\mathrm{C} \text { wins })=0.28+0.42 \times 0.28+\ldots \\
&= \frac{0.28}{1-0.42} \\
&=
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 }
\end{gathered}
$$
\] \& FT their value of k if between 0 and 1

\hline
\end{tabular}

Ques	Solution	Mark	Notes
4(a)(i) (ii) (b)	$\begin{gathered} P(X=6)=\binom{20}{6} \times 0.2^{6} \times 0.8^{14}=0.109 \\ \text { Prob }=0.9900-0.0692 \text { or } 0.9308-0.0100 \\ =0.921 \text { cao } \\ \mathrm{B}(200,0.0123) \text { is approx } \operatorname{Po}(2.46) \\ P(Y=3)=\frac{\mathrm{e}^{-2.46} \times 2.46^{3}}{3!}=0.212 \end{gathered}$	$\begin{gathered} \text { M1A1 } \\ \text { B1B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1A1 } \end{gathered}$	M0 if no working shown B0B0B0 if no working shown M0 if no working shown Do not accept use of tables
	$\begin{aligned} \mathrm{P}(2 \mathrm{G}) & =\frac{1}{3} \times 1+\frac{1}{3} \times \frac{3}{4} \times \frac{2}{3}+\frac{1}{3} \times \frac{2}{4} \times \frac{1}{3} \\ & =\frac{5}{9} \text { cao } \\ \mathrm{P}(\mathrm{~A} \mid 2 \mathrm{G}) & =\frac{1 / 3}{5 / 9} \\ & =\frac{3}{5} \text { cao } \end{aligned}$	M1A3 A1 B1B1 B1	M1 Use of Law of Total Prob (Accept tree diagram) FT denominator from (a) B1 num, B1 denom
6(a)(i) (ii) (b)(i) (ii)	$\begin{gathered} X \text { is } \mathrm{B}(10,0.75) \text { si } \\ E(X)=7.5, \\ \operatorname{Var}(X)=1.875 \end{gathered}$ Attempt to evaluate either $\mathrm{P}(X=7)$ or $\mathrm{P}(X=8)$ $\mathrm{P}(X=7)=0.250 ; \mathrm{P}(X=8)=0.282$ So try $\mathrm{P}(X=9)=0.188$ Most likely value $=8$ $\begin{aligned} & W=10 X-2(10-X)=12 X-20 \\ & \mathrm{E}(\mathrm{~W})=12 \times 7.5-20=70 \\ & \operatorname{Var}(\mathrm{~W})=12^{2} \times \operatorname{Var}(X)=270 \end{aligned}$	B1 B1 B1 M1 A1 A1 A1 B1 B1 M1A1	Award the final A1 only if the previous A1 was awarded FT their mean and variance from (a) and FT their derived values of a and b provided that $a \neq 1$ and $b \neq 0$
7(a) (b)(i) (ii)	$\begin{aligned} & E(X)=0.1 \times 1+0.2 \times 2+0.3 \times 3+0.1 \times 4+0.3 \times 5 \\ & \quad=3.3 \\ & E\left(X^{2}\right)=0.1 \times 1+0.2 \times 4+0.3 \times 9+0.1 \times 16 \\ & +0.3 \times 25 \quad(12.7) \\ & \quad \operatorname{Var}(X)=12.7-3.3^{2}=1.81 \end{aligned}$ The possibilities are $(1,1,2) ;(1,2,1) ;(2,1,1)$ $P(S=4)=0.1^{2} \times 0.2 \times 3=0.006$ The only extra possibility is $(1,1,1)$ so $P(S=3)=0.1^{3} \quad(0.001)$ Therefore $P(S \leq 4)=0.007$	M1 A1 B1 M1A1 B1 M1A1 B1 B1 B1	FT their $E\left(X^{2}\right)$ Award M1 if only one correct possibility given FT from (b)(i) if M1 awarded

Ques	Solution	Mark	Notes
$8(\mathbf{a})(\mathbf{i})$ (ii) (b)	$\begin{aligned} & \qquad \begin{aligned} \text { Prob }= & \frac{\mathrm{e}^{-15} \times 15^{12}}{12!} \quad \text { or } 0.2676-0.1848 \\ & =0.083 \end{aligned} \quad \text { or } 0.8152-0.7324 \\ & \text { We require } P(X \geq 20) \\ & \\ & \\ & =1-0.8752=0.1248 \end{aligned}$ (Using tables, the number required is) 25	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \text { M1A1 } \end{gathered}$	M0 if no working shown Award M1A0 for use of adjacent row or column Award M1A0 for 24 or 26
$9(\mathbf{a})(\mathbf{i})$ (ii)	$\begin{aligned} \text { Using } \mathrm{F}(2) & =1 \\ 1 & =k(8-2) \\ k & =1 / 6 \text { (convincing) } \\ P(1.25 \leq X \leq 1.75) & =F(1.75)-\mathrm{F}(1.25) \\ & =0.6015 \ldots-0.1171 . . \quad \text { si } \\ & =0.484 \quad(31 / 64) \end{aligned}$	M1 A1 M1 A1 A1	
(b)(i) (ii)	$\begin{aligned} f(x) & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{x^{3}-x}{6}\right) \\ & =\frac{3 x^{2}-1}{6} \\ \mathrm{E}(X) & =\int_{1}^{2} x\left(\frac{3 x^{2}-1}{6}\right) \mathrm{d} x \\ & =\left[\frac{x^{4}}{8}-\frac{x^{2}}{12}\right]_{1}^{2} \\ & =1.625 \quad \text { cao } \end{aligned}$	M1 A1 M1A1 A1 A1	M1 for the integral of $x f(x)$, A1 for completely correct with or without limits FT on their f if previous M1 awarded Limits must appear here if not before M0 if no working shown

Mathematics FP1 January 2014

Solutions and Mark Scheme

Final Version

Ques	Solution	Mark	Notes
1	$\begin{aligned} & f(x+h)-f(x)=\frac{x+h}{1+x+h}-\frac{x}{1+x} \\ &=\frac{(x+h)(1+x)-x(1+x+h)}{(1+x+h)(1+x)} \\ &=\frac{h}{(1+x+h)(1+x)} \\ & f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{h}{h(1+x+h)(1+x)} \\ &=\frac{1}{(1+x)^{2}} \text { cso } \end{aligned}$	M1A1 A1 A1 M1 A1	
2	$\begin{aligned} S_{n} & =\sum_{r=1}^{n} r(r+1)^{2}=\sum_{r=1}^{n} r^{3}+2 \sum_{r=1}^{n} r^{2}+\sum_{r=1}^{n} r \\ & =\frac{n^{2}(n+1)^{2}}{4}+\frac{2 n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2} \\ & =\frac{n(n+1)}{12}\left(3 n^{2}+3 n+8 n+4+6\right) \\ & =\frac{n(n+1)(n+2)(3 n+5)}{12} \end{aligned}$	M1A1 A1A1 A1 A1	Award A1 for 2 correct
	$\begin{aligned} (1+2 i)^{4} & =1+4.2 \mathrm{i}+6(2 \mathrm{i})^{2}+4(2 \mathrm{i})^{3}+(2 \mathrm{i})^{4} \\ & =1+8 \mathrm{i}-24-32 \mathrm{i}+16=-7-24 \mathrm{i} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Award M1 for use of binomial theorem (oe)
(b)(i)	$\begin{aligned} \text { Let } f(x) & =x^{4}+12 x-5 \\ f(1+2 \mathrm{i}) & =-7-24 \mathrm{i}+12+24 \mathrm{i}-5=0 \end{aligned}$ (showing that $1+2 \mathrm{i}$ is a root)	M1A1	
(ii)	Another root is $1-2 \mathrm{i}$ EITHER It follows that $x^{2}-2 x+5$ is a factor of $f(x)$ $x^{4}+12 x-5=\left(x^{2}-2 x+5\right)\left(x^{2}+2 x-1\right)$ The other two roots are $-1 \pm \sqrt{2}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1A1 } \\ \text { M1A1 } \end{gathered}$	
	$\begin{aligned} & \text { OR } \\ & \begin{array}{l} (1+2 \mathrm{i})(1-2 \mathrm{i})=5 \\ (1+2 \mathrm{i})+(1-2 \mathrm{i})=2 \end{array} \end{aligned}$	B1	
	Therefore if α, β denote the other two roots $\alpha+\beta=-2 \text { and } \alpha \beta=-1$ So α, β are the roots of the equation $x^{2}+2 x-1=0$ The other two roots are $-1 \pm \sqrt{2}$	B1 B1 M1A1	

Ques	Solution	Mark	Notes
4	$\begin{aligned} & \alpha+\beta=\frac{3}{2}, \alpha \beta=2 \\ & \alpha^{2} \beta+\alpha \beta^{2}+\alpha \beta=\alpha \beta(\alpha+\beta+1)=5 \\ & \alpha^{3} \beta^{3}+\alpha^{2} \beta^{3}+\alpha^{3} \beta^{2}=\alpha^{2} \beta^{2}(\alpha \beta+\alpha+\beta)=14 \\ & \alpha \beta^{2} \times \alpha^{2} \beta \times \alpha \beta=\alpha^{4} \beta^{4}=16 \end{aligned}$ The required equation is $x^{3}-5 x^{2}+14 x-16=0$	B1 M1A1 M1A1 M1A1 B1	FT one slip in line above in sign or in their two values. FT their three values
5(a)	$\begin{aligned} & \text { Ref matrix }=\left[\begin{array}{ccc} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ & \text { Translation matrix }=\left[\begin{array}{lll} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right] \\ & \text { Rotation matrix }=\left[\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ & \mathbf{T}=\left[\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{ccc} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]= \\ & {\left[\begin{array}{ccc} 0 & 1 & 2 \\ -1 & 0 & -1 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{ccc} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{ccc} 0 & 1 & 0 \\ \text { or } \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{ccc} 0 & -1 & 1 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{array}\right] } \\ &=\left[\begin{array}{ccc} -1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right] \end{aligned}$ The general point on the line is ($\alpha, 2 \alpha-1$). Consider $\begin{aligned} & {\left[\begin{array}{ccc} -1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{c} \alpha \\ 2 \alpha-1 \\ 1 \end{array}\right]=\left[\begin{array}{c} -\alpha+2 \\ 2 \alpha-2 \\ 1 \end{array}\right]} \\ & x=-\alpha+2, y=2 \alpha-2 \end{aligned}$ Eliminating α, the equation of the image is $y=2-2 x$	B1 B1 B1 M1 A1 M1 m1 A1 M1A1	

Ques	Solution	Mark	Notes
6(a)	Putting $n=1$, the formula gives $\left[\begin{array}{ll} 1 & 2 \\ 0 & 3 \end{array}\right]$ which is correct so the result is true for $n=1$ Assume formula is true for $n=k$, ie $\left[\begin{array}{ll} 1 & 2 \\ 0 & 3 \end{array}\right]^{k}=\left[\begin{array}{cc} 1 & 3^{k}-1 \\ 0 & 3^{k} \end{array}\right]$ Consider, for $n=k+1$, $\begin{gathered} {\left[\begin{array}{ll} 1 & 2 \\ 0 & 3 \end{array}\right]^{k+1}=\left[\begin{array}{ll} 1 & 2 \\ 0 & 3 \end{array}\right]^{k}\left[\begin{array}{ll} 1 & 2 \\ 0 & 3 \end{array}\right] \text { or }\left[\begin{array}{ll} 1 & 2 \\ 0 & 3 \end{array}\right]\left[\begin{array}{ll} 1 & 2 \\ 0 & 3 \end{array}\right]^{k}} \\ =\left[\begin{array}{cc} 1 & 3^{k}-1 \\ 0 & 3^{k} \end{array}\right]\left[\begin{array}{ll} 1 & 2 \\ 0 & 3 \end{array}\right] \text { or }\left[\begin{array}{ll} 1 & 2 \\ 0 & 3 \end{array}\right]\left[\begin{array}{cc} 1 & 3^{k}-1 \\ 0 & 3^{k} \end{array}\right] \\ =\left[\begin{array}{cc} 1 & 2+3\left(3^{k}-1\right) \\ 0 & 3^{k+1} \end{array}\right] \text { or }\left[\begin{array}{cc} 1 & 3^{k}-1+2.3^{k} \\ 0 & 3^{k+1} \end{array}\right] \\ =\left[\begin{array}{cc} 1 & 3^{k+1}-1 \\ 0 & 3^{k+1} \end{array}\right] \end{gathered}$ Therefore true for $n=k \Rightarrow$ true for $n=k+1$ and since true for $n=1$, the result is proved by induction. The formula gives $\mathbf{A}^{-1}=\left[\begin{array}{cc}1 & -2 / 3 \\ 0 & 1 / 3\end{array}\right]$ EITHER Consider $\left[\begin{array}{cc}1 & -2 / 3 \\ 0 & 1 / 3\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ OR $\mathbf{A}^{-1}=\frac{1}{3}\left[\begin{array}{cc}3 & -2 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & -2 / 3 \\ 0 & 1 / 3\end{array}\right]$ The formula is therefore correct for $n=-1$	B1 M1 M1 A1 A1 A1 A1 B1 B1 B1	This line must be seen Award this A1 only if previous A1 awarded Award final A1 only if all six previous marks have been awarded

Ques	Solution	Mark	Notes
7(a)(i)	$\begin{aligned} \text { Cofactor matrix } & =\left[\begin{array}{ccc} -1 & 2 & -1 \\ -9 & 6 & 0 \\ 7 & -5 & 1 \end{array}\right] \\ \text { Adjugate matrix } & =\left[\begin{array}{ccc} -1 & -9 & 7 \\ 2 & 6 & -5 \\ -1 & 0 & 1 \end{array}\right] \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	Award the M1 if at least 5 of the elements are correct
(ii)	$\begin{aligned} & \text { Determinant }=3 \\ & \text { Inverse matrix }=\frac{1}{3}\left[\begin{array}{ccc} -1 & -9 & 7 \\ 2 & 6 & -5 \\ -1 & 0 & 1 \end{array}\right] \\ & {\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc} -1 & -9 & 7 \\ 2 & 6 & -5 \\ -1 & 0 & 1 \end{array}\right]\left[\begin{array}{c} 13 \\ 13 \\ 19 \end{array}\right]} \end{aligned}$	B1 B1	FT their adjugate matrix
(b)	$=\left[\begin{array}{l} 1 \\ 3 \\ 2 \end{array}\right]$	M1	FT their inverse matrix
		A1	
8(a)	Taking logs,		
	$\ln f(x)=\sqrt{x} \ln \left(\frac{1}{x}\right)$	B1	
	Differentiating,		
	$\frac{f(x)}{f(x)}=\frac{1}{2 \sqrt{x}} \ln \left(\frac{1}{x}\right)+\sqrt{x} \cdot-\frac{1}{x}$	B1B1	B1 for each side
	$f^{\prime}(x)=f(x)\left(\frac{-2-\ln x}{2 \sqrt{x}}\right)$ Putting $f^{\prime}(x)=0$,	B1	Award this B1 only if $\ln (1 / x)$ has been simplified to $-\ln x$ and the two terms are over a common denom.
	$\begin{gathered} \ln (x)=-2 \text { so } x=\mathrm{e}^{-2}=0.135 \\ y=\mathrm{e}^{2 / \mathrm{e}}=2.09 \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	
(c)	$f^{\prime}(x)>0$ for $0<x<\mathrm{e}^{-2} ; f^{\prime}(x)<0$ for $x>\mathrm{e}^{-2}$ cao	B1	Accept $x<\mathrm{e}^{-2}$ Award this B1 if the answer is
	It is a maximum	B1	consistent with a previous line containing two sets of values of x even if incorrect.

Ques	Solution	Mark	Notes
9(a)	Putting $z=0$, we see that LHS $=$ RHS $=2$ hence locus passes through $(0,0)$	M1 A1	Accept alternative arguments that do not depend upon the result obtained in (b)
(b)	Putting $z=x+\mathrm{i} y$, $\begin{aligned} & \|x-2+\mathrm{i} y\|=2\|x+\mathrm{i}(y+1)\| \\ & (x-2)^{2}+y^{2}=4\left(x^{2}+(y+1)^{2}\right) \\ & x^{2}-4 x+4+y^{2}=4 x^{2}+4 y^{2}+8 y+4 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	
	$3 x^{2}+3 y^{2}+4 x+8 y=0$ (This shows that the locus of P is a circle.) Consider the equation in the form $x^{2}+y^{2}+\frac{4}{3} x+\frac{8}{3} y=0$	A1 B1	
	The centre is $\left(-\frac{2}{3},-\frac{4}{3}\right)$ cao The radius is $\frac{2 \sqrt{5}}{3}$ (1.49) cao	B1 B1	

WJEC
$\frac{\text { WJEC }}{\text { CBAC }}$
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

