WJEC GCE ASIA level CBAC

0981/01

MATHEMATICS - M2

Mechanics
A.M. TUESDAY, 10 June 2014

1 hour 30 minutes plus your additional time allowance

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:
a 12 page answer book;
a Formula Booklet;
a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink, black ball-point pen or your usual method.

Answer ALL questions.
Take 9 as $9.8 \mathrm{~ms}^{-2}$
Sufficient working must be shown to demonstrate the MATHEMATICAL method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. The diagram shows a piston, of mass 0.8 kg , enclosed in a horizontal tube and attached to a light spring of natural length 0.2 m and modulus of elasticity $\mathbf{6 2 5} \mathbf{N}$.

The other end of the spring is fixed to the end of the tube at point \boldsymbol{B}

Initially, the piston is held at rest at a point \boldsymbol{A} with the spring compressed a distance of $0 \cdot 1 \mathrm{~m}$, so that $A B$ is the compressed length of the spring.
(a) Calculate the elastic energy stored in the spring.
[2 marks]
The piston is then released. During the subsequent motion, it is subjected to a resistance to motion of constant magnitude 46 N
(b) Determine the velocity of the piston when the spring reaches its natural length.
[5 marks]
2. A particle of mass 5 kg moves under the action of a horizontal force given by
$F=30 t^{-2}-30 \mathrm{~N}$ at time $t \mathrm{~S}$, where $\boldsymbol{t} \boldsymbol{>} \mathbf{0}$. It also experiences a constant resistance to motion of magnitude 120 N
(a) Show that the motion of the particle satisfies the differential equation

$$
\frac{d v}{d t}=6 t^{-2}-30
$$

where $\mathbf{V} \mathrm{ms}^{-1}$ is the velocity of the particle at time $\boldsymbol{t} \boldsymbol{S}$
[2 marks]
(b) Calculate the value of \boldsymbol{t} when the acceleration of the particle is $24 \mathrm{~ms}^{-2}$
[2 marks]

5

2(c) Given that the velocity of the particle is $18 \mathrm{~ms}^{-1}$ when $t=\frac{1}{3}$, find an expression for \boldsymbol{V} in terms of \boldsymbol{t}. Hence find the values of t when $V=10$
[6 marks]
3. A vehicle of mass 4000 kg is travelling up a slope inclined at an angle $\mathbf{\alpha}$ to the horizontal, where $\sin \alpha=\frac{2}{49}$. The engine of the vehicle is working at a constant rate of 90 kW
(a) Calculate the resistance to the motion of the vehicle at the instant when its speed is $4.8 \mathrm{~ms}^{-1}$ and its acceleration is $1 \cdot 2 \mathrm{~ms}^{-2}$
[6 marks]
(b) Determine the maximum velocity of the vehicle when the resistance to motion has magnitude 12800 N
[4 marks]
4. At time $\boldsymbol{t}=\boldsymbol{0}$, an aeroplane \boldsymbol{A} has position vector $(3 \underline{i}+5 \underline{j}+20 k) m$ and is flying with constant velocity $(-\underline{i}+2 \underline{j}+\underline{k}) \mathrm{ms}^{-1}$ At time $\boldsymbol{t}=\boldsymbol{0}$, another aeroplane \boldsymbol{B} has position vector $(-2 \underline{i}+x \underline{j}+15 k) m$, and is flying with constant velocity

$$
(3 \underline{i}-4 \underline{j}+2 \underline{k}) \mathrm{ms}^{-1}
$$

(a) Find expressions for the position vector of \boldsymbol{A} and the position vector of \boldsymbol{B} at time $\boldsymbol{t} \boldsymbol{s}$
[3 marks]
(b) Determine an expression for $A B^{2}$, where $A B$ is the distance between \boldsymbol{A} and \boldsymbol{B} at time $\boldsymbol{t s}$
[4 marks]
(c) Given that the shortest distance between \boldsymbol{A} and B occurs at $\boldsymbol{t}=5$, calculate the value of \boldsymbol{X}
[3 marks]
5. A player kicks a ball from a point \mathbf{A} on horizontal ground so that 2.5 seconds later the ball just clears a bar at a point B. The point B is $\mathbf{3 m}$ above the ground. The horizontal distance of \boldsymbol{B} from A is 42 m
(a) Calculate the horizontal and vertical components of the initial velocity of the ball.
[4 marks]
(b) Find the magnitude of the velocity of the ball and the angle that the direction of the velocity makes with the horizontal as it passes the point B
[6 marks]
(c) Determine the horizontal distance from \boldsymbol{B} to the point where the ball first hits the ground again.
[3 marks]

9

6. A particle of mass $\mathbf{3} \mathbf{k g}$ moves on a horizontal plane. At time $\boldsymbol{t}=\mathbf{0}$, the particle has position vector $-2 \underline{i}+3 \underline{j} \mathbf{m}$, where \underline{i} and \underline{j} are unit vectors along the \boldsymbol{X}-axis and \boldsymbol{Y}-axis respectively. At time $t \mathbf{S}$, the particle moves with velocity $\underline{\mathrm{V}} \mathrm{ms}^{-1}$ given by

$\underline{v}=4 \sin 2 t \underline{i}+15 \cos 5 t \underline{j}$

(a) Find the magnitude of the force acting on the particle at time $t=\frac{3 \pi}{2} \mathrm{~S}$
[5 marks]
(b) Determine the position vector of the particle at time $\boldsymbol{t} \boldsymbol{S}$
[4 marks]
(c) Calculate the time and the distance of the particle from the origin when it crosses the \boldsymbol{y}-axis for the first time.
[4 marks]
7. One end of a light rod of length / metres is freely jointed to a fixed point \boldsymbol{O} and the other end is attached to a particle of mass $\boldsymbol{m} \mathbf{k g}$. The particle is projected so that it describes a vertical circle. The speed of the particle at the highest point, $\mathrm{U} \mathrm{MS}^{-1}$, is a quarter of its speed at the lowest point of the circle.
(a) Show that $u^{2}=\frac{4}{15} g I$
[3 marks]
(b) When the rod is inclined at an angle $\boldsymbol{\theta}$ to the DOWNWARD vertical,
(i) find an expression for the tension in the rod in terms of $\boldsymbol{m}, \boldsymbol{g}$ and $\boldsymbol{\theta}$
(ii) determine the value of $\boldsymbol{\theta}$ when the tension in the rod becomes zero.
[9 marks]

