WJEC GCE ASIA level CBAC

0980/01

MATHEMATICS - M1

Mechanics 1
A.M. TUESDAY, 10 June 2014

1 hour 30 minutes plus your additional time allowance

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:
a 12 page answer book;
a Formula Booklet;
a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink, black ball-point pen or your usual method.

Answer ALL questions.
Take 9 as $9.8 \mathrm{~ms}^{-2}$
Sufficient working must be shown to demonstrate the MATHEMATICAL method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

3

1. A crate of mass 25 kg rests on the floor of a lift, which is descending. Find the reaction of the floor of the lift on the crate when
(a) the acceleration of the lift is $1.2 \mathrm{~ms}^{-2}$
[3 marks]
(b) the velocity of the lift is constant.
[1 mark]
2. A vehicle travels along a straight horizontal road. As it passes point A with speed $10 \mathrm{~ms}^{-1}$, it accelerates at a constant rate for 21 S until it reaches a speed of $\mathbf{2 4} \mathrm{ms}^{-1}$. It then travels at this constant speed of $24 \mathrm{~ms}^{-1}$ for $\mathbf{T s}$ before decelerating at a uniform rate, coming to rest at a point B. The time taken to decelerate to rest is 16 S
(a) Calculate the magnitude of the acceleration of the vehicle.
[3 marks]
(b) Determine the distance taken for the vehicle to decelerate to rest.
[3 marks]
(c) Draw a sketch of the velocity-time graph for the motion of the vehicle between \boldsymbol{A} and \boldsymbol{B}
[4 marks]
(d) Given that the distance between \boldsymbol{A} and B is 15000 m , find the value of \boldsymbol{T}
[4 marks]

5

3. The diagram below shows two objects connected by means of a light inextensible string passing over a smooth light pulley. The pulley is fixed at
the bottom of a rough plane inclined at an angle α to the horizontal, where $\tan \alpha=\frac{3}{4}$. Object A, of mass 7 kg , lies on the inclined plane and object B, of mass 3 kg , is hanging freely. The coefficient of friction between the plane and object A is 0.6

Initially, the objects are held at rest with the string just taut. The objects are then released so that \mathbf{A} slides down the plane.

3(a) Determine the magnitude of the frictional force acting on \mathbf{A}
[3 marks]
(b) Calculate the magnitude of the acceleration of the objects and the tension in the string. [7 marks]
4. The diagram shows a uniform rod $\mathbf{A B}$, of length 1.8 m and mass 3 kg , held in horizontal equilibrium by two small fixed cylinders C and D. An object of mass 12 kg rests on the rod at B. The length $A C$ is 0.3 m and $C D$, the distance between the cylinders, is $\mathbf{0 . 4} \mathrm{m}$. The force exerted on the rod by each of the cylinders is vertical.

Find the magnitude of each of the forces exerted on the rod by the cylinders.
[7 marks]
5. An object of mass 80 Kg is being dragged along a straight line $A B$ by means of three horizontal forces of magnitude and direction as shown in the diagram. The resistance to the motion of the object is constant and of magnitude $16 \mathbf{N}$

5(a) Show that $T=8 \sqrt{3}$
[3 marks]
(b) Determine the magnitude of the acceleration of the object.
[4 marks]
(c) When the object is moving with a speed of $12 \mathrm{~ms}^{-1}$, the three horizontal forces of 20 N , 28 N , and $T \mathrm{~N}$ are removed. Calculate the time taken for the speed of the object to reduce to $4 \mathrm{~ms}^{-1}$
[5 marks]
6. A sphere \mathbf{A} of mass 3 kg , moving with speed $2 \mathrm{~ms}^{-1}$, collides directly with another sphere B, of mass 7 kg , moving in the opposite direction with speed $5 \mathrm{~ms}^{-1}$. The coefficient of restitution between the spheres is $\mathbf{0 . 6}$
(a) Calculate the speed of sphere A and the speed of sphere \boldsymbol{B} immediately after the collision.
[7 marks]
(b) Determine the impulse exerted by sphere \boldsymbol{A} on sphere \boldsymbol{B} during the collision.
[2 marks]
(c) After the collision with sphere B, sphere \boldsymbol{A} collides with a wall which is perpendicular to the line of motion of the spheres. It rebounds with speed $3.65 \mathrm{~ms}^{-1}$. Determine the coefficient of restitution between the wall and sphere \boldsymbol{A}
[1 mark]
7. The diagram shows an object of mass 9 kg attached at a point \boldsymbol{A} to two light rigid supports $A B$ and $A C$. The support $A B$ is inclined at an angle of 60° to the vertical and the support $A C$ is inclined at an angle of 45° to the vertical.

Calculate the tension in $A B$ and the thrust in AC
[7 marks]
8. A piece of jewellery is made up of a uniform rectangular lamina $A B C D$ with an isosceles triangle $X Y Z_{\text {REMOVED }}$ and two stones E and $F_{\text {ADDED }}$
In triangle $X Y Z, \quad X Y=X Z$. $Y Z$ is parallel to $A B$.
The stone E has a mass twice that of the removed triangle $X Y Z$ and the stone F has a mass three times that of the triangle $X Y Z$.
The dimensions, in $\mathbf{C M}$, are as shown in the diagram opposite.
(a) Calculate the distance of the centre of mass of the piece of jewellery from
(ii)

AD

$A B$
[10 marks]
(b) The piece of jewellery is suspended freely from a point P on $D C$ so that $A D$ is vertical. Determine the length of $P C$
[1 mark]

