GCE AS/A level

0979/01

MATHEMATICS - FP3
 Further Pure Mathematics

A.M. TUESDAY, 24 June 2014

1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. (a) Starting with the exponential definition of $\sinh x$, show that

$$
\begin{equation*}
\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right) \tag{4}
\end{equation*}
$$

(b) Solve the equation

$$
\cosh 2 x=2 \sinh x+5,
$$

giving your answers in the form $\ln (a+\sqrt{b})$ where a, b are integers.
2. The equation $x^{3}+x=3$ has a root α between $1 \cdot 2$ and $1 \cdot 3$.
(a) Alun suggests the following iterative sequence for finding the value of α based on rearranging the equation

$$
x_{n+1}=\sqrt[3]{3-x_{n}} \text { with } x_{0}=1 \cdot 25 .
$$

By evaluating an appropriate derivative, show that this sequence is convergent. Use it to find the value of α correct to 4 decimal places.
(b) Starting with $x_{0}=1 \cdot 25$, use the Newton-Raphson method to find the value of α correct to 6 decimal places.
3. (a) Assuming the derivative of $\cosh x$, show that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}(\operatorname{sech} x)=-\operatorname{sech} x \tanh x . \tag{1}
\end{equation*}
$$

(b) Determine the Maclaurin series for $\tanh x$ as far as the term in x^{3}.
(c) Hence find an approximate value for the integral

$$
\int_{0}^{0.5}(1+x) \tanh x \mathrm{~d} x .
$$

Give your answer correct to three significant figures.
4. Using the substitution $t=\tan \left(\frac{x}{2}\right)$, determine the value of the integral

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \frac{1}{2-\cos x} \mathrm{~d} x \tag{8}
\end{equation*}
$$

5. The integral I_{n} is defined, for $n \geqslant 0$, by

$$
I_{n}=\int_{0}^{1} x^{n} \mathrm{e}^{-x^{2}} \mathrm{~d} x
$$

(a) Show that, for $n \geqslant 2$,

$$
\begin{equation*}
I_{n}=\left(\frac{n-1}{2}\right) I_{n-2}-\frac{\mathrm{e}^{-1}}{2} . \tag{3}
\end{equation*}
$$

(b) Evaluate I_{5}, giving your answer in the form $a-b \mathrm{e}^{-1}$, where a, b are positive constants to be determined.
6. The curve C has polar equation

$$
r=\sin \theta+\cos \theta, \quad 0 \leqslant \theta \leqslant \frac{\pi}{2}
$$

(a) Find the polar coordinates of the point at which the tangent is parallel to the initial line.
(b) Find the area of the region enclosed between C, the initial line and the line $\theta=\frac{\pi}{2}$.
7. (a) Using the substitution $x=a \sinh \theta$, show that

$$
\begin{equation*}
\int \sqrt{x^{2}+a^{2}} \mathrm{~d} x=\frac{a^{2}}{2}\left(\sinh ^{-1}\left(\frac{x}{a}\right)+\frac{x \sqrt{x^{2}+a^{2}}}{a^{2}}\right)+\text { constant } . \tag{5}
\end{equation*}
$$

(b) The equation of the curve C is

$$
y=x^{2}, \quad 0 \leqslant x \leqslant 1 .
$$

Find the arc length of C.

END OF PAPER

