

GCE AS/A level

0979/01

MATHEMATICS – FP3 Further Pure Mathematics

A.M. TUESDAY, 24 June 2014 1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer **all** questions.

Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. You are reminded of the necessity for good English and orderly presentation in your answers. 1. (a) Starting with the exponential definition of $\sinh x$, show that

$$\sinh^{-1} x = \ln\left(x + \sqrt{x^2 + 1}\right).$$
 [4]

(b) Solve the equation

$$\cosh 2x = 2\sinh x + 5,$$

giving your answers in the form $\ln(a + \sqrt{b})$ where *a*, *b* are integers. [5]

- **2.** The equation $x^3 + x = 3$ has a root α between 1.2 and 1.3.
 - (a) Alun suggests the following iterative sequence for finding the value of α based on rearranging the equation

$$x_{n+1} = \sqrt[3]{3 - x_n}$$
 with $x_0 = 1.25$.

By evaluating an appropriate derivative, show that this sequence is convergent. Use it to find the value of α correct to 4 decimal places. [8]

- (b) Starting with $x_0 = 1.25$, use the Newton-Raphson method to find the value of α correct to 6 decimal places. [6]
- 3. (a) Assuming the derivative of $\cosh x$, show that

$$\frac{\mathrm{d}}{\mathrm{d}x}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x.$$
[1]

- (b) Determine the Maclaurin series for tanh x as far as the term in x^3 . [6]
- (c) Hence find an approximate value for the integral

$$\int_0^{0.5} (1+x) \tanh x \, \mathrm{d}x.$$

Give your answer correct to three significant figures.

[4]

4. Using the substitution $t = tan\left(\frac{x}{2}\right)$, determine the value of the integral

$$\int_{0}^{\frac{\pi}{2}} \frac{1}{2 - \cos x} \, \mathrm{d}x.$$
 [8]

5. The integral I_n is defined, for $n \ge 0$, by

$$I_n = \int_0^1 x^n \mathrm{e}^{-x^2} \mathrm{d}x.$$

(a) Show that, for $n \ge 2$,

$$I_n = \left(\frac{n-1}{2}\right) I_{n-2} - \frac{e^{-1}}{2}.$$
 [3]

- (b) Evaluate I_5 , giving your answer in the form $a be^{-1}$, where a, b are positive constants to be determined. [6]
- 6. The curve *C* has polar equation

$$r = \sin\theta + \cos\theta, \ 0 \le \theta \le \frac{\pi}{2}$$

- (a) Find the polar coordinates of the point at which the tangent is parallel to the initial line.
- (b) Find the area of the region enclosed between C, the initial line and the line $\theta = \frac{\pi}{2}$. [5]
- 7. (a) Using the substitution $x = a \sinh \theta$, show that

$$\int \sqrt{x^2 + a^2} \, \mathrm{d}x = \frac{a^2}{2} \left(\sinh^{-1} \left(\frac{x}{a} \right) + \frac{x\sqrt{x^2 + a^2}}{a^2} \right) + \text{ constant} \,.$$
 [5]

(b) The equation of the curve C is

$$y = x^2, \ 0 \le x \le 1.$$

Find the arc length of C.

END OF PAPER

[6]

[8]