GCE MARKING SCHEME

MATHEMATICS
 AS/Advanced

JANUARY 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2013 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Unit Page
C1 1
C2 6
C3 12
M1 19
S1 28
FP1 32

Mathematics C1 January 2013

Solutions and Mark Scheme

Final Version

1. (a) Gradient of $A B=\underline{\text { increase in } y}$
increase in x
Gradient of $A B=4 / 2 \quad$ (or equivalent) A1
A correct method for finding the equation of $A B$ using the candidate's value for the gradient of $A B$.
Equation of $A B: \quad y-1=2(x-4) \quad$ (or equivalent) A1
(f.t. the candidate's value for the gradient of $A B$)

Equation of $A B: \quad 2 x-y-7=0$ (f.t. one error if both M1's are awarded) A1
(b) Gradient of $L=-\frac{1}{2} \quad$ (or equivalent) B1

An attempt to use the fact that the product of perpendicular lines $=-1$ (or equivalent)
Gradient $A B \times$ Gradient $L=-1 \Rightarrow A B, L$ perpendicular
(convincing)
(c) An attempt to solve equations of $A B$ and L simultaneously M1
$x=5, y=3$
(convincing)
(d) A correct method for finding the length of $A B(A C)$
$A B=\sqrt{ } 20$
$A C=\sqrt{ } 45$
$k=2 / 3$
(c.a.o.)

A1
2. (a) $\frac{6 \sqrt{ } 7-11 \sqrt{ } 2}{\sqrt{7}-\sqrt{ } 2}=\frac{(6 \sqrt{ } 7-11 \sqrt{ } 2)(\sqrt{ } 7+\sqrt{ } 2)}{(\sqrt{7}-\sqrt{ } 2)(\sqrt{ } 7+\sqrt{ } 2)}$

M1
Numerator: $\quad 6 \times 7+6 \times \sqrt{ } 7 \times \sqrt{ } 2-11 \times \sqrt{ } 7 \times \sqrt{ } 2-11 \times 2 \quad$ A1
Denominator: $7-2$
$\frac{6 \sqrt{7}-11 \sqrt{ } 2}{\sqrt{7}-\sqrt{ } 2}=4-\sqrt{ } 14 \quad$ (c.a.o.) A1
Special case
If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $\sqrt{ } 7-\sqrt{ } 2$
(b) $\frac{3}{2 \sqrt{6}}=p \sqrt{ } 6$, where p is a fraction equivalent to $1 / 4$
$\left(\frac{(\sqrt{6}}{2}\right)^{3}=q \sqrt{ } 6$, where q is a fraction equivalent to $3 / 4$
B1
$\frac{3}{2 \sqrt{6}}+\left(\frac{\sqrt{6}}{2}\right)^{3}=\sqrt{6}$
(c.a.o.) B1
3. y-coordinate at $P=-2$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x-14 \quad$ (an attempt to differentiate, at least
An attempt to substitute $x=3$ in candidate's expression for $\underline{d y}$ M1 m1 $\mathrm{d} x$
Use of candidate's numerical value for $\underline{d y}$ as gradient of tangent at P
m1 $\mathrm{d} x$
Equation of tangent at $P: \quad y-(-2)=4(x-3) \quad$ (or equivalent) (f.t. only candidate's derived value for y-coordinate at P) A1
4. (a)
(i) $\quad a=4$

B1
$b=-11$
B1
(ii) least value -33 (f.t. candidate's value for b) B1 corresponding x-value $=-4$
(f.t. candidate's value for a)

B1
(b) $x^{2}-x-9=2 x-5$

M1
An attempt to collect terms, form and use a correct method to solve their quadratic equation m1 $x^{2}-3 x-4=0 \Rightarrow(x-4)(x+1)=0 \Rightarrow x=4, x=-1$
(both values, c.a.o.) A1
When $x=4, y=3$, when $x=-1, y=-7$
(both values, f.t. one slip) A1
The line $[y=2 x-5]$ intersects the curve $\left[y=x^{2}-x-9\right]$ at two points $(-1,-7)$ and $(4,3)$
(f.t. candidate's x and y-values)

E1
5. (a) An expression for $b^{2}-4 a c$, with at least two of a, b or c correct M1
$b^{2}-4 a c=6^{2}-4 \times 5 \times(-3 k)$
A1
$b^{2}-4 a c>0$
m1
$k>-3 / 5 \quad$ (o.e.)
[f.t. only for $k<3 / 5$ from $b^{2}-4 a c=6^{2}-4 \times 5 \times(3 k)$]
(b) Finding critical values $x=2 \cdot 5, x=3$ B1 $2.5 \leq x \leq 3$ or $3 \geq x \geq 2.5$ or $[2.5,3]$ or $2.5 \leq x$ and $x \leq 3$ or a correctly worded statement to the effect that x lies between 2.5 and 3 (both values inclusive) (f.t. candidate's derived critical values) B2 Note:
$2 \cdot 5<x<3$
$2 \cdot 5 \leq x, x \leq 3$
$2 \cdot 5 \leq x \quad x \leq 3$
$2 \cdot 5 \leq x$ or $x \leq 3$
all earn B1
6. (a) $y+\delta y=-(x+\delta x)^{2}+4(x+\delta x)-6$

B1
Subtracting y from above to find δy M1
$\delta y=-2 x \delta x-(\delta x)^{2}+4 \delta x \quad$ A1
Dividing by δx and letting $\delta x \rightarrow 0$ M1

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{limit}_{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=-2 x+4
$$

(b) $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=5 \times \frac{4}{3} \times x^{1 / 3}-9 \times \frac{-1}{2} \times x^{-3 / 2}$ B1, B1
7. Coefficient of $x={ }^{6} \mathrm{C}_{1} \times a^{5} \times 4(x)$ B1
Coefficient of $x^{2}={ }^{6} \mathrm{C}_{2} \times a^{4} \times 4^{2}\left(x^{2}\right)$ B1
$15 \times a^{4} \times m=k \times 6 \times a^{5} \times 4$ ($m=\mathbf{1 6}$ or 4 or $8, k=\mathbf{2}$ or ${ }^{1} / 2$) M1 $a=5$
(c.a.o.) A1
8. (a) Use of $f(-2)=0$ M1
$-8 p+72+8-8=0 \Rightarrow p=9 \quad$ (convincing) A1
Special case
Candidates who assume $p=9$ and show $f(-2)=0$ are awarded B1
(b) $\quad f(x)=(x+2)\left(9 x^{2}+a x+b\right)$ with one of a, b correct
$f(x)=(x+2)(3 x-2)(3 x+2)$
A1

Roots are $x=-2,2 / 3,-2 / 3$ A1

Special case

Candidates who find one of the remaining factors, $(3 x-2)$ or $(3 x+2)$, using e.g. factor theorem, are awarded B1
9. (a)

Concave up curve and x-coordinate of minimum $=1$ B1
y-coordinate of minimum $=-6$
Both points of intersection with x-axis
(b)

Concave up curve and y-coordinate of minimum $=-2 \quad$ B1
x-coordinate of minimum $=-1$
Both points of intersection with x-axis

Note: A candidate who draws a curve with no changes to the original graph is awarded 0 marks (both parts)
10. (a) $\underline{\mathrm{d} y}=3 x^{2}-6 x-9$
d x
Putting candidate's derived $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
M1
$x=-1,3 \quad$ (both correct)
(f.t. candidate's $\underline{\mathrm{d} y}$) A1 $\mathrm{d} x$
Stationary points are $(-1,19)$ and $(3,-13)$ (both correct) (c.a.o) A1 A correct method for finding nature of stationary points yielding either $(-1,19)$ is a maximum point or ($3,-13$) is a minimum point (f.t. candidate's derived values) M1 Correct conclusion for other point
(f.t. candidate's derived values) A1
(b)

Graph in shape of a positive cubic with two turning points Correct marking of both stationary points

(f.t. candidate's derived maximum and minimum points)
(c) $k<-13 \quad$ B1
$19<k$
(f.t. candidate's y-values at stationary points)

Mathematics C2 January 2013

Solutions and Mark Scheme

Final Version
1.

0	$3 \cdot 16227766$
$0 \cdot 5$	$3 \cdot 142451272$
1	3
$1 \cdot 5$	$2 \cdot 573907535$
2	$1 \cdot 414213562$

(If B2 not awarded, (5 values correct)

Correct formula with $h=0.5 \quad$ M1
$I \approx \frac{0 \cdot 5}{2} \times\{3 \cdot 16227766+1 \cdot 414213562+2(3 \cdot 142451272+3+2 \cdot 573907535)\}$
$I \approx 22.00920884 \times 0.5 \div 2$
$I \approx 5.50230221$
$I \approx 5.5023$ (f.t. one slip) A1
Special case for candidates who put $h=0.4$

0	$3 \cdot 16227766$
$0 \cdot 4$	$3 \cdot 152142129$
$0 \cdot 8$	$3 \cdot 080259729$
$1 \cdot 2$	$2 \cdot 876108482$
$1 \cdot 6$	$2 \cdot 429814808$
2	1.414213562

(all values correct) B1
Correct formula with $h=0.4 \quad$ M1
$I \approx \frac{0 \cdot 4}{2} \times\{3 \cdot 16227766+1 \cdot 414213562+2(3 \cdot 152142129+3 \cdot 080259729+$
$I \approx 27.65314152 \times 0.4 \div 2$
$I \approx 5.530628304$
$I \approx 5.5306 \quad$ (f.t. one slip) A1
Note: Answer only with no working shown earns 0 marks
2. (a) $7 \sin ^{2} \theta-\sin \theta=3\left(1-\sin ^{2} \theta\right)$

$$
\text { (correct use of } \cos ^{2} \theta=1-\sin ^{2} \theta \text {) M1 }
$$

An attempt to collect terms, form and solve quadratic equation in $\sin \theta$, either by using the quadratic formula or by getting the expression into the form $(a \sin \theta+b)(c \sin \theta+d)$, with $a \times c=$ candidate's coefficient of $\sin ^{2} \theta$ and $b \times d=$ candidate's constant m1
$10 \sin ^{2} \theta-\sin \theta-3=0 \Rightarrow(2 \sin \theta+1)(5 \sin \theta-3)=0$
$\Rightarrow \sin \theta=\frac{-1}{2}, \sin \theta=\frac{3}{5}$
(c.a.o.)
$\theta=210^{\circ}, 330^{\circ}$
B1, B1
$\theta=36.87^{\circ}, 143.13^{\circ}$
Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.
$\sin \theta=+,-$, f.t. for 3 marks, $\sin \theta=-,-$, f.t. for 2 marks $\sin \theta=+,+$, f.t. for 1 mark
(b) $3 x-20^{\circ}=52^{\circ}, 232^{\circ}, 412^{\circ}$ (one value)

B1
$x=24^{\circ}, 84^{\circ}, 144^{\circ}$
B1, B1, B1
Note: Subtract (from final three marks) 1 mark for each additional root in range, ignore roots outside range.
3. (a) $x^{2}=10^{2}+(x+4)^{2}-2 \times 10 \times(x+4) \times \frac{3}{5}$ (correct use of cos rule) M1
$x^{2}=100+x^{2}+8 x+16-12 x-48$
$x=17$
(f.t. one slip) A1
(b) $\sin \alpha=\frac{4}{5}$

Area of triangle $A B C=\frac{1}{2} \times 10 \times 21 \times \frac{4}{5}$
(substituting the correct values in the correct places in the area formula, f.t. candidate's values for x and $\sin \alpha$)
Area of triangle $A B C=84 \mathrm{~cm}^{2} \quad$ (f.t. candidate's value for x)
4.
(a) (i) nth term $=1+4(n-1)=1+4 n-4=4 n-3$ (convincing)
(ii) $S_{n}=1+5+\ldots+(4 n-7)+(4 n-3)$ $S_{n}=(4 n-3)+(4 n-7)+\ldots+5+1$ Reversing and adding

Either:

$$
\begin{array}{lrl}
2 S_{n}=(4 n-2)+(4 n-2)+\ldots+(4 n-2)+(4 n-2) & \\
\text { Or: } & \\
2 S_{n}=(4 n-2)+\ldots & (n \text { times }) & \text { A1 } \\
2 S_{n}=n(4 n-2) & & \\
S_{n}=n(2 n-1) & & \text { (convincing) }
\end{array} \text { A1 }
$$

(b) $\frac{10}{2} \times[2 a+9 d]=55$

Either: $(a+3 d)+(a+6 d)+(a+8 d)=27$
Or: $\quad(a+4 d)+(a+7 d)+(a+9 d)=27$
$3 a+17 d=27 \quad$ (seen or implied by later work)
An attempt to solve candidate's derived linear equations simultaneously by eliminating one unknown
$a=-8, d=3$ (both values)
5. (a) $r=1.5$ B1
A correct method for finding $(p+4)$ th term M1 $(p+4)$ th term $=81$ (c.a.o.) A1
(b) Either:

$$
\frac{a\left(1-r^{3}\right)}{1-r}=22 \cdot 8
$$

Or: $\quad a+a r+a r^{2}=22 \cdot 8$
B1
$\frac{a}{1-r}=18.75$
B1
An attempt to solve these equations simultaneously by eliminating a

> M1
$r^{3}=-0.216$
A1
$r=-0 \cdot 6$
(c.a.o.) A1
$a=30$
(f.t. candidate's derived value for r)

A1
6. (a) $5 \times \frac{x^{-3}}{-3}-7 \times \frac{x^{5 / 3}}{5 / 3}+c$
(b) (i) $9-a^{2}=0 \Rightarrow a=3$ B1
(ii) $\underline{\mathrm{d} y}= \pm 2 x$ M1 d x Gradient of tangent $= \pm 6 \quad$ (f.t. candidate's value for a) A1 $b=18$ (convincing) A1
(iii) Either:

Area of triangle $=27 \quad$ (f.t. candidate's value for a) B1 Use of integration to find the area under the curve M1 $\int_{j}\left(9-x^{2}\right) \mathrm{d} x=9 x-(1 / 3) x^{3} \quad$ (correct integration) B1 Correct method of substitution of candidate's limits m1

$$
\left[9 x-(1 / 3) x^{3}\right]_{0}^{3}=(27-9)-0=18
$$

Use of 0 and candidate's value for a as limits and trying to find total area by subtracting area under curve from area of triangle

Shaded area $=27-18=9$

Or:

Equation of tangent is $y=-6 x+18$
Use of integration to find an area

$$
\int_{j}^{(-6 x+18) \mathrm{d} x=-3 x^{2}+18 x} \quad \text { (correct integration) }
$$

$$
\begin{array}{ll}
\int\left(9-x^{2}\right) \mathrm{d} x=9 x-(1 / 3) x^{3} & \text { (correct integration) }
\end{array} \text { B1 } \quad \begin{array}{ll}
& \\
\text { Correct method of substitution of candidate's limits } & \mathrm{m} 1
\end{array}
$$

$$
\left[-3 x^{2}+18 x\right]_{0}^{3}=(-27+54)-0=27
$$

(f.t. one slip in candidate's equation of tangent)
$\left[9 x-(1 / 3) x^{3}\right]_{0}^{3}=(27-9)-0=18$
Use of 0 and candidate's value for a as limits and trying to find total area by subtracting area under curve from area under line
m1
Shaded area $=27-18=9$
(c.a.o.) A1
7. (a) Let $p=\log _{a} x, q=\log _{a} y$

Then $x=a^{p}, y=a^{q} \quad$ (the relationship between \log and power) B1
$\underline{x}=\frac{a^{p}}{a^{q}}=a^{p-q}$
(the laws of indicies) B1
$\log _{a} x / y=p-q \quad$ (the relationship between \log and power)
$\log _{a} x / y=p-q=\log _{a} x-\log _{a} y \quad$ (convincing) B1
(b) Either:
$(2 x+5) \log _{10} 6=\log _{10} 7$
(taking logs on both sides and using the power law) M1
$x=\underline{\log }_{10} 7-5 \log _{10} \underline{6} \quad$ (o.e.) A1
$2 \log _{10} 6$
$x=-1.957 \quad$ (f.t. one slip, see below) A1
Or:
$2 x+5=\log _{6} 7 \quad$ (rewriting as a \log equation) M1
$x=\underline{\log }_{6} \underline{7-5} \quad$ (o.e.) A1
2
(f.t. one slip, see below) A1
$x=-1.957$
Note: an answer of $x=1.957$ from $x=5 \log _{10} \underline{6-\log _{10} 7}$
earns M1 A0 A1
an answer of $x=3.043$ from $x=\underline{\log _{10}} \frac{7+5 \log _{10} 6}{2 \log _{10} 6} \underline{1}$
earns M1 A0 A1
an answer of $x=-3.914$ from $x=\underline{\log }_{\frac{10}{}} \frac{7-5 \log _{10}}{\log _{10} 6}$
earns M1 A0 A1
Note: Answer only with no working shown earns 0 marks
8.
(a) (i) $\quad A(-3,5)$
A correct method for finding radius M1
Radius $=\sqrt{ } 20$ A1
(ii) Either:

A correct method for finding $A P^{2}$
$A P^{2}=18(<20) \Rightarrow P$ is inside C (f.t. candidate's coordinates for A)

Or:

An attempt to substitute $x=-6, y=2$ in the equation of C M1 $(-6)^{2}+2^{2}+6 \times(-6)-10 \times 2+14=-2(<0)$ $\Rightarrow P$ is inside C
(b) (i) An attempt to substitute $(2 x+1)$ for y in the equation of the circle
$5 x^{2}-10 x+5=0 \quad$ A1
Either: Use of $b^{2}-4 a c \quad m 1$
Discriminant $=0 \Leftrightarrow y=2 x+1$ is a tangent to the circle)

Or: \quad An attempt to factorise candidate's quadratic
Repeated (single) root ($\Rightarrow y=2 x+1$ is a tangent to the circle)
$x=1, y=3$
(ii) Either:
$R Q=\sqrt{ } 45$ or $R A=\sqrt{ } 65$
(f.t. candidate's coordinates for A and Q) B1

Correct substitution of candidate's values in an expression for $\sin R, \cos R$ or $\tan R$

$$
A R Q=33.69^{\circ} \quad \text { (f.t. one numerical slip) } \quad \mathrm{A} 1
$$

Or:

$R Q=\sqrt{ } 45$ or $R A=\sqrt{ } 65$
(f.t. candidate's coordinates for A and Q) \quad B1

Correct substitution of candidate's values in the cos rule to find $\cos R$
$A R Q=33.69^{\circ} \quad$ (f.t. one numerical slip) A1

(b) BC=11 \quad B1
$C D=11(\pi-\phi) \quad$ B1
$11 \phi=11(\pi-\phi) \pm 13 \quad$ M1
$\phi=0.98$ radians (c.a.o.) A1

Mathematics C3 January 2013

Solutions and Mark Scheme

Final Version
1.

1	0.211941557
1.25	0.182137984
1.5	0.154280773
1.75	0.128955672
2	0.106506978

(If B2 not awarded, award B1 for either 3 or 4 values correct)

Correct formula with $h=0.25$
$I \approx 1.871384705 \times 0.25 \div 3$
$I \approx 0.155948725$
$I \approx 0.156$ (f.t. one slip)
Note: Answer only with no working earns 0 marks
2. (a)
(i) e.g. $\theta=20^{\circ}$
$\cos ^{3} \theta=0.83 \quad$ (choice of θ and one correct evaluation) B1 $1-\sin ^{3} \theta=0.96 \quad$ (both evaluations correct but different) B1
(ii) $\theta=0^{\circ}$ or $\theta=90^{\circ}$

B1
(b) $\quad 4\left(1+\cot ^{2} \theta\right)=9-8 \cot \theta$. (correct use of $\left.\operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta\right) \quad \mathrm{M} 1$ An attempt to collect terms, form and solve quadratic equation in $\cot \theta$, either by using the quadratic formula or by getting the expression into the form $(a \cot \theta+b)(c \cot \theta+d)$, with $a \times c=$ candidate's coefficient of $\cot ^{2} \theta$ and $b \times d=$ candidate's constant
$4 \cot ^{2} \theta+8 \cot \theta-5=0 \Rightarrow(2 \cot \theta-1)(2 \cot \theta+5)=0$
$\Rightarrow \cot \theta=\frac{1}{2}, \cot \theta=-\frac{5}{2}$
$\Rightarrow \tan \theta=2, \tan \theta=-\frac{2}{5}$
(c.a.o.) A1
$\theta=63.43^{\circ}, 243.43^{\circ}$
B1
$\theta=158.2^{\circ}, 338.2^{\circ}$ B1, B1
Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.
$\tan \theta=+,-$, f.t. for 3 marks, $\tan \theta=-,-$, f.t. for 2 marks $\tan \theta=+,+$, f.t. for 1 mark
3. (a) $\underline{\mathrm{d}}\left(2 y^{3}\right)=6 y^{2} \underline{\mathrm{~d} y}$
$\mathrm{d} x \quad \mathrm{~d} x$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{20 x^{3} y+3 x^{2}}{6 y^{2}-5 x^{4}} \quad$ (o.e.)
(c.a.o.) B1
(b)
(i) candidate's x-derivative $=3 t^{2}$
candidate's y-derivative $=4 t^{3}+35 t^{4}$
$\underline{\mathrm{d} y}=$ candidate's y-derivative
$\mathrm{d} x$ candidate's x-derivative $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 t^{3}+35 t^{4}}{3 t^{2}}$
(ii) $\frac{\mathrm{d}}{\mathrm{d} t}\left\{\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=\frac{4+70 t}{3} \quad$ (o.e.)

Use of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\underline{\mathrm{d}}\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right) \div \frac{\mathrm{d} x}{\mathrm{~d} t}$
(f.t. candidate's expression for $\underline{d y}$) M1

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{4+70 t}{9 t^{2}} \quad \text { (o.e.) } \quad \mathrm{A} 1
$$

(iii) An attempt to solve $t^{3}-5=3$ and substitution of answer in candidate's expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=4
$$

(c.a.o.) A1
4. (a)

Correct shape for $y=\ln x$, including the fact that the y-axis is an asymptote at $-\infty$
A straight line with positive intercept and negative gradient intersecting once with $y=\ln x$ in the first quadrant.

B1
Equation has one root
(c.a.o.)

B1
(b) $\quad x_{0}=4.7$
$x_{1}=4.726218746 \quad\left(x_{1}\right.$ correct, at least 5 places after the point)
$x_{2}=4.723437268$
$x_{3}=4.723731615$
$x_{4}=4.723700458=4.72370 \quad$ (x_{4} correct to 5 decimal places)
Let $h(x)=\ln x+2 x-11$
An attempt to check values or signs of $h(x)$ at $x=4.723695$, $x=4.723705$
$h(4.723695)=-1.87 \times 10^{-5}<0, h(4.723705)=3.45 \times 10^{-6}>0$
A1
Change of sign $\Rightarrow \alpha=4.72370$ correct to five decimal places
5. (a)
(b) $\quad \frac{\mathrm{d}}{\mathrm{d} x}(\cot x)=\frac{\sin x \times m \sin x-\cos x \times k \cos x}{\sin ^{2} x} \quad(m=1,-\mathbf{1}, k=\mathbf{1},-1) \quad$ M1
$\mathrm{d} x \quad \sin ^{2} x$

$$
\frac{\mathrm{d}(\cot x)}{\mathrm{d} x}=\frac{\sin x \times(-\sin x)-\cos x \times(\cos x)}{\sin ^{2} x} \quad \text { A1 }
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\cot x)=\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}
$$

$$
\frac{\mathrm{d}(\cot x)=\frac{-1}{\mathrm{~d} x}=-\operatorname{cosec}^{2} x \quad \text { (convincing) } \quad \text { A1 } \sin ^{2} x}{\text { A1 }}
$$

$$
\begin{aligned}
& \text { (i) } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \times\left(5 x^{2}-3 x\right)^{-1 / 2} \times f(x) \quad(f(x) \neq 1) \\
& \underline{\mathrm{d} y}=\underline{1} \times\left(5 x^{2}-3 x\right)^{-1 / 2} \times(10 x-3) \\
& \mathrm{d} x \quad 2 \\
& \text { (ii) } \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{ \pm 7}{\sqrt{\left(1-(7 x)^{2}\right)}} \text { or } \frac{1}{\sqrt{\left(1-(7 x)^{2}\right)}} \text { or } \frac{7}{\sqrt{\left(1-7 x^{2}\right)}} \\
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{7}{\sqrt{ }\left(1-49 x^{2}\right)} \\
& \text { (iii) } \frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{3 x} \times f(x)+\ln x \times g(x) \\
& \underline{\mathrm{d} y}=\mathrm{e}^{3 x} \times f(x)+\ln x \times g(x) \\
& \frac{1}{\mathrm{~d} x} \quad \text { (either } f(x)=1 / x \text { or } g(x)=3 \mathrm{e}^{3 x} \text {) A1 } \\
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{e}^{3 x}}{x}+3 \mathrm{e}^{3 x} \ln x \quad \text { (all correct) } \quad \text { A1 }
\end{aligned}
$$

6.

(a)
(i) $\quad \int_{j} \cos \left(\frac{4 x+5}{3}\right) \mathrm{d} x=k \times \sin \left(\frac{4 x+5}{3}\right)+c\left(k=1,4 / 3,3 / 4,-\frac{3}{4}, \frac{1}{4}\right)$

$$
\int^{\cos \left(\frac{4 x+5}{3}\right)} \mathrm{d} x=\frac{3}{4} \times \sin \left(\frac{4 x+5}{3}\right)+c
$$

(ii) $\begin{aligned} & \int \mathrm{e}^{2 x+9} \mathrm{~d} x=k \times \mathrm{e}^{2 x+9}+c \\ & \int \\ & \int \mathrm{e}^{2 x+9} \mathrm{~d} x=1 / 2 \times \mathrm{e}^{2 x+9}+c\end{aligned}$ $(k=1,2,1 / 2) \quad$ M1
(iii) $\int \frac{3}{(7-2 x)^{6}} \mathrm{~d} x=\frac{3}{-5 k} \times(7-2 x)^{-5}+c \quad(k=1,2,-\mathbf{2},-1 / 2)$ M1 $\int \frac{3}{(7-2 x)^{6}} \mathrm{~d} x=\frac{3}{-5 \times-2} \times(7-2 x)^{-5}+c \quad \quad \mathrm{~A} 1$

Note: The omission of the constant of integration is only penalised once.
(b)

$$
\begin{array}{ll}
\int \frac{1}{3 x-4} \mathrm{~d} x=k \times \ln |3 x-4| & (k=1,3,1 / 3) \\
\int \frac{1}{3 x-4} \mathrm{~d} x=[1 / 3 \times \ln |3 x-4|\rceil & \text { M1 } \\
\end{array}
$$

A correct method for substitution of limits 2,44 , in an expression of the form $k \times \ln |3 x-4| \quad\left(k=1,3, \frac{1}{3}\right) \quad \mathrm{m} 1$

$$
\int_{2}^{44} \frac{1}{3 x-4} \mathrm{~d} x=\ln 4
$$

(c.a.o.) A1
7. (a) Trying to solve either $3 x-4>5$ or $3 x-4<-5$
$3 x-4>5 \Rightarrow x>3$
$3 x-4<-5 \Rightarrow x<-1 / 3$
(both inequalities)
Required range: $x<-1 / 3$ or $x>3$
(f.t. one slip)

Alternative mark scheme

$(3 x-4)^{2}>25$
(squaring both sides, forming and trying to solve quadratic) M1
Critical values $x=-\frac{1}{3}$ and $x=3$
A1
Required range: $x<-1 / 3$ or $x>3$ (f.t. one slip in critical values)
(b) (i)

(ii) $\quad a=-2$

B1
$b=-4$
B1
8. (a) $y+2=\ln (4 x+5)$

B1
An attempt to express candidate's equation as an exponential equation

$x=\frac{\left(\mathrm{e}^{y+2}-5\right)}{4}$	(f.t. one slip)	M1
$f^{-1}(x)=\frac{\left(\mathrm{e}^{x+2}-5\right)}{4}$	(f.t. one slip)	A1

(b) $D\left(f^{-1}\right)=[-2, \infty) \quad$ B1
9. $\quad(a) \quad$ (i) $\quad D(f g)=(0, \infty)$

B1
(ii) $R(f g)=[a, b)$ with
$a=-25$
B1
$b=\infty$
B1
(iii) $f g(x)=(2 x-3)^{2}-25$ B1
(iv) Putting candidate's expression for $f g(x)$ equal to 0 and using a correct method to try and solve the resulting quadratic in x M1
$x=4, x=-1$,
(c.a.o.)

A1
$x=4$
(c.a.o.)

A1
(b)

$$
\text { (i) } \begin{aligned}
\quad h h(x) & =\frac{2 \times \frac{2 x+7}{5 x-2}+7}{5 \times \frac{2 x+7}{5 x-2}-2} \\
h h(x) & =\frac{4 x+14+35 x-14}{10 x+35-10 x+4} \\
\quad h h(x) & =x \\
\text { (ii) } \quad h^{-1}(x) & =h(x)
\end{aligned}
$$

(convincing) A1

B1

Mathematics M1 January 2013

Solutions and Mark Scheme

Final Version

Q	Solution	Mark	Notes
1 (a).	Using $\mathrm{v}=\mathrm{u}+$ at with $\mathrm{u}=12, \mathrm{v}=32, \mathrm{t}=4$ $\begin{aligned} & 32=12+4 a \\ & \mathrm{a}=\underline{\mathrm{5} \mathrm{~ms}^{-2}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	o.e.
1(b)	$\begin{aligned} & \text { Using } \mathrm{s}=\mathrm{ut}+0.5 \mathrm{at}^{2}, \mathrm{u}=12, \mathrm{t}=4, \mathrm{a}=5 \\ & \mathrm{~s}=12 \mathrm{x} 4+0.5 \mathrm{x} 5 \mathrm{x}^{2} \\ & \mathrm{~s}=\underline{88 \mathrm{~m}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	cao
	$\begin{aligned} & \text { OR } \\ & \text { Using } v^{2}=u^{2}+2 \text { as, } u=12, v=32, a=5 \\ & 32^{2}=12^{2}+2 \times 5 \mathrm{~s} \\ & \mathrm{~s}=\underline{88 \mathrm{~m}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	cao
	$\begin{aligned} & \text { OR } \\ & \text { Using } \mathrm{s}=0.5(\mathrm{u}+\mathrm{v}) \mathrm{t}, \mathrm{u}=12, \mathrm{v}=32, \mathrm{t}=4 \\ & \mathrm{~s}=0.5(12+32) \times 4 \\ & \mathrm{~s}=\underline{88 \mathrm{~m}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	cao
1(c)	$\begin{aligned} & \text { Using } v^{2}=u^{2}+2 a s, u=12, a=5, s=44 \\ & v^{2}=12^{2}+2 \times 5 \times 44 \\ & v=\underline{24.2} \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	ft answer in (b) for s ft (b) ft (b)

Q	Solution	Mark	Notes
2(a)(i)	$\mathrm{e}=0$	B1	
2(a)(ii)	Conservation of momentum equation $\begin{aligned} & 3 \times 4+7 \times 0=3 \mathrm{v}_{\mathrm{A}}+7 \mathrm{v}_{\mathrm{B}} \\ & 12=10 \mathrm{v} \\ & \mathrm{v}=\underline{1.2 \mathrm{~ms}^{-1}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	zero term not required $\mathrm{v}=\mathrm{v}_{\mathrm{A}}=\mathrm{v}_{\mathrm{B}}$
2(b)(i)	$\begin{aligned} & \mathrm{v}^{\prime}=0.25 \times 5 \\ & \mathrm{v}^{\prime}=\underline{1.25} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
2(b)(ii)	$\begin{aligned} & I=6(5+1.25) \\ & I=37.5 \\ & \text { Units for } I \text { is } N s \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	allow -I Ft answer in (b(i)) allow dimensions kgms^{-1}

Q	Solution	Mark	Notes
$3(a)$	$\begin{aligned} & \mathrm{s}=\mathrm{ut}+0.5 \mathrm{at}^{2}, \mathrm{~s}=(\pm) 1.2, \mathrm{a}=(\pm) 9.8, \mathrm{u}=15 \\ & -1.2=15 \mathrm{t}+0.5 \times(-9.8) \mathrm{t}^{2} \\ & 4.9 \mathrm{t}^{2}-15 \mathrm{t}-1.2=0 \end{aligned}$ Use of correct formula to solve quad eq $\begin{aligned} \mathrm{t} & =3.139 \\ \mathrm{t} & =\underline{3.1 \mathrm{~s}(\mathrm{to} \text { one d. p. })} \end{aligned}$	M1 A1 m1 A1	complete method
3 (b)	For the model used, the time taken for the particle to reach the ground is independent of the weight of the particle. I would expect the time to be the same as that in (a).	E1	no reason given gets E0

Q	Solution	Mark	Notes
4.	Resolve in direction of 12 N $\mathrm{P} \sin 45+\mathrm{Q} \sin 30=12$ Resolve in direction of 8 N $P \cos 45=\mathrm{Q} \cos 30+8$ Attempt to eliminate one variable $\mathrm{Q}(\sin 30+\cos 30)=4$ $Q=\frac{8}{1+\sqrt{3}}=2.928$ $\mathrm{Q}=\underline{2.9 \mathrm{~N}}$ $\begin{aligned} & \frac{1}{\sqrt{2}} \mathrm{P}=12-0.5 \times \mathrm{Q} \\ & \mathrm{P}=\underline{14.9 \mathrm{~N}} \end{aligned}$	M1 A1 M1 A1 m1 A1 A1 PA-1	equation required equation required sensible method if coefficients approximated

Q	Solution	Mark	Notes
5.			
5			

Q	Solution	Mark	Notes
6 (a).	Apply N2L to lift $\begin{aligned} & 800 \mathrm{~g}-\mathrm{T}=800 \mathrm{a} \\ & 800 \mathrm{a}=800 \times 9.8-6500 \\ & \mathrm{a}=\underline{1.675 \mathrm{~ms}^{-2}} \end{aligned}$	M1 A1 A1	dim correct, \pm (T-800g) allow 1.68
6(b)	Apply N21 to parcel $\begin{aligned} & 25 \mathrm{~g}-\mathrm{R}=25 \mathrm{a} \\ & \mathrm{R}=25 \times 9.8-25 \times 1.675 \\ & \mathrm{R}=\underline{203.125 \mathrm{~N}} \end{aligned}$	M1 A1 A1	dim correct $\pm(25 \mathrm{~g}-\mathrm{R})$ ft (a) ft (a)

Q	Solution	Mark	Notes
7.			
7(a)	When beam about to tilt about $\mathrm{D}, \mathrm{R}_{\mathrm{C}}=0$ Moments about D $\begin{aligned} & 1800 \times(6-1.2)+\left(\mathrm{R}_{\mathrm{C}} \times 3.8\right)=\mathrm{W} \times 1.8 \\ & \mathrm{~W}=\underline{4800 \mathrm{~N}} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	equation required (or 2 equations) correct moment correct equation (or 2 correct equations) cao
7(b)	Moments about C $\begin{aligned} & R_{D} \times 3.8=4800 \times 2 \\ & R_{D}=\underline{2526.32 \mathrm{~N}} \end{aligned}$ Resolve vertically $\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{D}}=4800$ $R_{C}=\underline{2273.68 \mathrm{~N}}$	M1 A1 A1 M1 A1	dim correct equation ft W ft W

Q		Mark	Notes	
8.				

Mathematics S1 January 2013
Solutions and Mark Scheme
Final Version

Ques	Solution	Mark	Notes
1(a)	```Use of P(A\cupB)+P(A\capB)=P(A)+P(B) Use of P(A\capB) = P(A)P(B) 0.4+0.2P(B)=0.2+P(B) P(B)}=0.2```	$\begin{aligned} & \hline \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	
(b)	EITHER $\begin{aligned} \text { We require } \quad & P\left(A \cap B^{\prime}\right)+P\left(A^{\prime} \cap B\right) \\ & =0.2 \times(1-0.25)+0.25 \times(1-0.2) \\ & =0.35 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	FT their $\mathrm{P}(\mathrm{B})$
	OR We require $\mathrm{P}(\mathrm{A} \cup \mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ $\begin{aligned} & =0.4-0.2 \times 0.25 \\ & =0.35 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	FT their $\mathrm{P}(\mathrm{B})$
$2(a)$ (b)	$\begin{aligned} \mathrm{E}(X) & =3.2, \operatorname{Var}(X)=2.56 \\ \mathrm{E}(Y) & =2 \times 3.2+5=11.4 \quad \text { cao } \\ \operatorname{Var}(Y) & =4 \times 2.56=10.24 \quad \text { cao } \end{aligned}$	$\begin{aligned} & \text { B1B1 } \\ & \text { M1A1 } \\ & \text { M1A1 } \end{aligned}$	
	$\begin{aligned} & Y=11 \Rightarrow X=3 \\ & \mathrm{P}(X=3)=\binom{16}{3} \times 0.2^{3} \times 0.8^{13}=0.246 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1A1 } \end{gathered}$	FT their derived value of X M0 if no working
3(a) (b)	$\begin{gathered} P(2 \text { red })=\frac{6}{11} \times \frac{5}{10} \times \frac{5}{9} \times 3 \text { or }\binom{6}{2}\binom{5}{1} \div\binom{ 11}{3} \\ =\frac{5}{11}(0.455) \end{gathered}$	$\begin{gathered} \text { M1A1 } \\ \text { A1 } \end{gathered}$	
	$\begin{aligned} P(2 \text { green })=\frac{4}{11} & \times \frac{3}{10} \times \frac{7}{9} \times 3 \text { or }\binom{4}{2}\binom{7}{1} \div\binom{ 11}{3} \\ & =\frac{14}{55}(0.255) \end{aligned}$	M1A1 A1	
	$\begin{aligned} \mathrm{P}(2 \text { the same }) & =\frac{5}{11}+\frac{14}{55} \\ & =\frac{39}{55}(0.709) \end{aligned}$	M1 A1	FT on their probs

\begin{tabular}{|c|c|c|c|}
\hline Ques \& Solution \& Mark \& Notes

\hline 4(a)(i) \& $$
\begin{gathered}
\text { Poisson mean }=6 \\
\mathrm{P}(4 \text { arrivals })=\mathrm{e}^{-6} \times \frac{6^{4}}{4!}=0.134 \mathrm{cao}
\end{gathered}
$$ \& $$
\begin{gathered}
\text { B1 } \\
\text { M1A1 }
\end{gathered}
$$ \& $$
\begin{aligned}
& \text { Accept } 0.2851-0.1512 \text { or } \\
& 0.8488-0.7149 \\
& \text { M0 if no working }
\end{aligned}
$$

\hline \multirow[t]{3}{*}{(ii)} \& EITHER
$$
\begin{aligned}
\mathrm{P}(\text { between } 2 \text { and } 8) & =0.8472-0.0174 \\
& \text { or } 0.9826-0.1528 \\
& =0.8298 \text { cao }
\end{aligned}
$$ \& $$
\begin{gathered}
\text { B1B1 } \\
\text { B1 }
\end{gathered}
$$ \& M0 if no working

\hline \& OR \& \&

\hline \& $$
\begin{aligned}
& \mathrm{P}(\text { between } 2 \text { and } 8)=\sum_{x=2}^{8} \mathrm{e}^{-6} \times \frac{6^{x}}{x!} \\
& =0.0446+0.0892+0.1339+0.1606+0.1606 \\
& \quad+0.1377+0.1033
\end{aligned}
$$ \& $$
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
$$ \& M0 if no working

\hline (b) \& $$
\begin{aligned}
&=0.83 \\
& \mathrm{E}(X)=12 \\
& E\left(X^{2}\right)=\mathrm{E}(X)+[E(X)]^{2}=156
\end{aligned}
$$ \& $$
\begin{gathered}
\text { A1 } \\
\text { B1 } \\
\text { M1A1 }
\end{gathered}
$$ \& M1 requires $\operatorname{Var}(X)=\mathrm{E}(X)$ FT their mean

\hline \multirow[t]{3}{*}{5(a)(i)

(ii)} \& Let X denote the number of seeds producing red flowers so that X is $\mathrm{B}(20,0.7)$ si \& B1 \&

\hline \& \[
\mathrm{P}(X=15)=\binom{20}{15} \times 0.7^{15} \times 0.3^{5}

\] \& M1 \& | M0 if no working |
| :--- |
| Accept $0.4164-0.2375$ or $0.7625-0.5836$ |

\hline \& = 0.179 \& A1 \&

\hline \multirow[t]{3}{*}{(ii)} \& The number of seeds not producing red flowers, X^{\prime}, is $\mathrm{B}(20,0.3)$ \& M1 \&

\hline \& We require $\mathrm{P}(X>12)=\mathrm{P}\left(X^{\prime}<8\right)$ \& m1 \&

\hline \& $=0.7723$ \& A1 \&

\hline \multirow{3}{*}{(b)} \& Number of seeds producing white flowers Y is $\mathrm{B}(150,0.09) \approx \operatorname{Poi}(13.5) \mathrm{si}$ \& B1 \&

\hline \& $$
\mathrm{P}(Y=10)=\mathrm{e}^{-13.5} \times \frac{13.5^{10}}{10!}
$$ \& M1 \& Do not accept use of interpolation in tables

\hline \& $=0.076$ \& A1 \& M0 if no working

\hline
\end{tabular}

Ques	Solution	Mark	Notes
6(a)	$\begin{array}{r} k(2+3+4+5)=1 \\ 14 k=1 \\ k=1 / 14 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Must be convincing
(b)	$\mathrm{E}(X)=\frac{2}{14} \times 1+\frac{3}{14} \times 2+\frac{4}{14} \times 3+\frac{5}{14} \times 4$	M1	
	$=\frac{20}{7}(2.86)$	A1	Accept 40k
	$E\left(X^{2}\right)=\frac{2}{14} \times 1+\frac{3}{14} \times 4+\frac{4}{14} \times 9+\frac{5}{14} \times 16$	B1	Accept in terms of k
	$\operatorname{Var}(X)=65 / 7-(20 / 7)^{2}$ $=1.12(55 / 49)$	M1	
	$\text { = } 1.12(55 / 49)$ The possibilities are	A1	Numerical value required
	$\left(x_{1}, x_{2}\right)=(1,2),(2,3),(3,4)$ si	B1	
	$\begin{aligned} \text { Prob } & =\frac{2}{14} \times \frac{3}{14}+\frac{3}{14} \times \frac{4}{14}+\frac{4}{14} \times \frac{5}{14} \\ & =0.194 \end{aligned}$	M1A1 A1	Numerical value required
7(a)	$\begin{aligned} \mathrm{P}(+) & =0.02 \times 0.96+0.98 \times 0.01 \\ & =0.029 \end{aligned}$	$\begin{gathered} \hline \text { M1A1 } \\ \text { A1 } \end{gathered}$	M1 Use of Law of Total Prob (Accept tree diagram)
(b)(i)	$\begin{aligned} \mathrm{P}(\text { Disease } \mid+) & =\frac{0.02 \times 0.96}{0.029} \\ & =0.662 \quad(96 / 145) \mathrm{cao} \end{aligned}$	$\begin{gathered} \text { B1B1 } \\ \text { B1 } \end{gathered}$	FT denominator from (a) B1 num, B1 denom
	EITHER $\begin{gathered} \mathrm{P}(+)=0.662 \times 0.96+0.338 \times 0.01 \\ =0.639 \end{gathered}$ OR	$\begin{gathered} \text { M1A1 } \\ \text { A1 } \end{gathered}$	M1 Use of Law of Total Prob (Accept tree diagram) FT from (b)(i)
	$\begin{aligned} \mathrm{P}(+) & =\frac{0.02 \times 0.96^{2}+0.98 \times 0.01^{2}}{0.029} \\ & =0.639 \end{aligned}$	M1A1	M1 valid attempt to use conditional probability

Ques	Solution	Mark	Notes
8(a)(i)	$\mathrm{P}(0.25 \leq X \leq 0.75)=F(0.75)-F(0.25)$	M1	
	$=0.6875(11 / 16)$	A1	
	$\begin{aligned} & 2 m^{2}-m^{4}=0.5 \\ & 2 m^{4}-4 m^{2}+1=0 \end{aligned}$	B1	
(iii)	$\begin{gathered} (\text { Root })=\frac{4 \pm \sqrt{16-8}}{4} \quad(=0.29289 . .) \\ m=\sqrt{0.29289 . .}=0.541 \end{gathered}$	$\begin{aligned} & \text { M1A1 } \\ & \text { M1A1 } \end{aligned}$	Condone the omission of the redundant root
(b)(i)	$\begin{aligned} f(x) & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(2 x^{2}-x^{4}\right) \\ & =4 x-4 x^{3} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	
(ii)	$\begin{aligned} E(\sqrt{X}) & =\int_{0}^{1} \sqrt{x}\left(4 x-4 x^{3}\right) \mathrm{d} x \\ & =\left[4 x^{5 / 2} \times \frac{2}{5}-4 x^{9 / 2} \times \frac{2}{9}\right]_{0}^{1} \\ & =\frac{32}{45} \end{aligned}$	M1A1 A1 A1	M1 for the integral of $\sqrt{x} f(x)$ A1 for completely correct although limits may be left until $2^{\text {nd }}$ line. FT their $f(x)$ from (b)(i) if M1 awarded there.

Mathematics FP1 January 2013

Solutions and Mark Scheme

Final Version

\begin{tabular}{|c|c|c|c|}
\hline Ques \& Solution \& Mark \& Notes \\
\hline 1 \& \[
\begin{aligned}
\& f(x+h)-f(x)=\frac{1}{2+(x+h)^{2}}-\frac{1}{2+x^{2}} \\
\&=\frac{2+x^{2}-2-(x+h)^{2}}{\left(2+(x+h)^{2}\right)\left(2+x^{2}\right)} \\
\&=\frac{-2 x h-h^{2}}{\left(2+(x+h)^{2}\right)\left(2+x^{2}\right)} \\
\& f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{-2 x h-h^{2}}{h\left(2+(x+h)^{2}\right)\left(2+x^{2}\right)}\right) \\
\&=\frac{-2 x}{\left(2+x^{2}\right)^{2}}
\end{aligned}
\] \& \begin{tabular}{l}
M1A1 \\
A1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \\
\hline \begin{tabular}{l}
2(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
By row reduction,
\[
\left[\begin{array}{lll}
1 \& 2 \& 3 \\
0 \& 5 \& 5 \\
0 \& 5 \& 5
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4 \\
6 \\
k-4
\end{array}\right]
\] \\
It follows now that \(k-4=6\)
\[
k=10
\] \\
Put \(z=\alpha\). \\
Then \(y=\frac{6}{5}-\alpha\) \\
and \(x=\frac{8}{5}-\alpha\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& FT their \(k\) if used \\
\hline 3(a)

(b) \& $$
\begin{align*}
& \begin{aligned}
\frac{4+6 \mathrm{i}}{1+\mathrm{i}} & =\frac{(4+6 \mathrm{i})(1-\mathrm{i})}{(1+\mathrm{i})(1-\mathrm{i})} \\
& =\frac{10+2 \mathrm{i}}{2} \quad(5+\mathrm{i})
\end{aligned} \\
& \mathrm{i}(x+\mathrm{i} y)+2(x-\mathrm{i} y)=5+\mathrm{i} \\
& 2 x-y=5 \\
& x-2 y=1 \\
& x=3, y=1 \\
& (z=3+\mathrm{i}) \\
& \operatorname{Mod}(z)=\sqrt{10} \\
& \operatorname{Arg}(z)=\tan ^{-1}(1 / 3)=0.322
\end{align*}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\\
\text { B1 } \\
\text { B1 }
\end{gathered}
$$

\] \& | Award M1 for substituting for z, \bar{z} |
| :--- |
| FT their z |

\hline
\end{tabular}

Ques	Solution	Mark	Notes
6	Putting $n=1$, the expression gives 1 which is correct so the result is true for $n=1$ Assume that the formula is true for $n=k$. $\left(\sum_{r=1}^{k} r^{3}=\frac{k^{2}(k+1)^{2}}{4}\right)$ Consider (for $n=k+1$) $\begin{aligned} & \sum_{r=1}^{k+1} r^{3}=\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3} \\ & =\frac{(k+1)^{2}}{4}\left(k^{2}+4 k+4\right) \\ & =\frac{(k+1)^{2}(k+2)^{2}}{4} \end{aligned}$ Therefore true for $n=k \Rightarrow$ true for $n=k+1$ and since true for $n=1$, the result is proved by induction.	B1 M1 M1A1 A1 A1 A1	
7(a)	Taking logs, $\ln f(x)=(\ln x)^{2}$ Differentiating, $\begin{gathered} \frac{f^{\prime}(x)}{f(x)}=\frac{2 \ln x}{x} \\ f^{\prime}(x)=2 x^{\ln x} \frac{\ln x}{x} \end{gathered}$	$\begin{gathered} \text { B1 } \\ \text { B1B1 } \\ \hline \text { B1 } \end{gathered}$	B1 for LHS, B1 for RHS
(b)	At a stationary point, $f^{\prime}(x)=0$ $\begin{aligned} & \ln x=0 \\ & x=1, y=1 \end{aligned}$ EITHER Consider $f(0.9)=1.011 \ldots, \mathrm{f}(1.1)=1.009$.. It is a minimum. OR Consider $f^{\prime}(0.9)=-0.236 . ., f^{\prime}(1.1)=0.174 .$ It is a minimum.	M1 A1 A1 M1 A1 M1 A1	Accept correct analysis leading to $f^{\prime \prime}(1)=2$

\begin{tabular}{|c|c|c|c|}
\hline Ques \& Solution \& Mark \& Notes \\
\hline \[
8(\mathbf{a})
\] \& \[
\begin{aligned}
\& \text { Rotation matrix }=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 \& -1 \\
1 \& 1
\end{array}\right] \\
\& \text { Reflection matrix }=\left[\begin{array}{cc}
0 \& -1 \\
-1 \& 0
\end{array}\right] \\
\& \qquad \mathbf{T}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
0 \& -1 \\
-1 \& 0
\end{array}\right]\left[\begin{array}{cc}
1 \& -1 \\
1 \& 1
\end{array}\right] \\
\&=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
-1 \& -1 \\
-1 \& 1
\end{array}\right]
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
B1
\end{tabular} \& \\
\hline \multirow[t]{2}{*}{(b)(i)

(ii)} \& Consider

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
-1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
\lambda \\
m \lambda
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-(m+1) \lambda \\
(m-1) \lambda
\end{array}\right]
$$ \& M1 \&

\hline \& | The image line satisfies $x=-(m+1) \lambda / \sqrt{2} ; y=(m-1) \lambda / \sqrt{2}$ |
| :--- |
| Eliminating λ, $y=\left(\frac{1-m}{1+m}\right) x$ | \& | A1 |
| :--- |
| A1 | \& The $\sqrt{2}$ need not be present

\hline \& | We are given that $\frac{1-m}{1+m}=m \Rightarrow m^{2}+2 m-1=0$ |
| :--- |
| Solving, $m=-1 \pm \sqrt{2}$ | \& | M1 |
| :--- |
| m1 |
| A1 | \&

\hline 9(a) \& $$
\begin{aligned}
& \qquad \begin{aligned}
& u+\mathrm{i} v=(x+\mathrm{i} y)^{2}+x+\mathrm{i} y \\
&=x^{2}+2 \mathrm{i} x y+\mathrm{i}^{2} y^{2}+x+\mathrm{i} y
\end{aligned} \\
& \text { whence } \quad v=2 x y+y=(2 x+1) y \\
& \text { and } \quad u=x^{2}-y^{2}+x
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$
\] \&

\hline \multirow[t]{2}{*}{(b)} \& $$
\begin{aligned}
& \text { Substituting } y=x+1, \\
& \qquad \begin{array}{l}
u=x^{2}-(x+1)^{2}+x=-x-1 \\
v=(2 x+1)(x+1)=2 x^{2}+3 x+1
\end{array}
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 }
\end{gathered}
$$
\] \& FT their expression for u from (a) Accept substitution of x in terms of y and subsequent elimination of y

\hline \& Attempting to eliminate x,

$$
\begin{aligned}
x & =-u-1 \\
v & =2(-u-1)^{2}+3(-u-1)+1 \\
& =2 u^{2}+u
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& No further FT for incorrect u

\hline
\end{tabular}

WJEC
$\frac{\text { WJEC }}{\text { CBAC }}$
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

