GCE AS/A level

WJEC
0979/01

MATHEMATICS - FP3 Further Pure Mathematics

P.M. MONDAY, 24 June 2013
$1^{1 / 2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Determine the two positive roots of the equation

$$
\cosh 2 x-7 \cosh x+7=0
$$

giving your answers correct to two decimal places.
2. Jim wants to evaluate the real cube roots of several positive numbers but his calculator only performs the basic arithmetic operations add, subtract, multiply, divide.
(a) He therefore decides to determine $\sqrt[3]{a}$ by applying the Newton-Raphson method to the equation $x^{3}-a=0$ where $a>0$.
(i) Show that this gives the iterative sequence

$$
x_{n+1}=\frac{2 x_{n}^{3}+a}{3 x_{n}^{2}} .
$$

(ii) Taking $x_{0}=2$, use this method to find $\sqrt[3]{10}$ correct to four decimal places.
(b) Huw suggests that an alternative method for determining $\sqrt[3]{a}$ could be to rearrange the equation $x^{3}-a=0$ in the form

$$
x=\frac{a}{x^{2}}
$$

and to define the iterative sequence

$$
x_{n+1}=\frac{a}{x_{n}^{2}} .
$$

Show, however, that this sequence diverges for all values of a.
3. The function f is defined by

$$
f(x)=\ln \left(2 \mathrm{e}^{x}-1\right)
$$

(a) Show that

$$
\begin{equation*}
f^{\prime \prime}(x)=\frac{-2 \mathrm{e}^{x}}{\left(2 \mathrm{e}^{x}-1\right)^{2}} \tag{3}
\end{equation*}
$$

(b) Determine the Maclaurin series for $f(x)$ as far as the term in x^{3}.
4. Determine the value of the integral

$$
\int_{1}^{2} \sqrt{\left(3+2 x-x^{2}\right)} \mathrm{d} x
$$

giving your answer correct to three significant figures.
5. The integral I_{n} is defined, for $n \geqslant 0$, by

$$
I_{n}=\int_{0}^{1} x^{n} \sinh x \mathrm{~d} x
$$

(a) Show that, for $n \geqslant 2$,

$$
\begin{equation*}
I_{n}=\cosh 1-n \sinh 1+n(n-1) I_{n-2} . \tag{5}
\end{equation*}
$$

(b) Evaluate I_{4}, giving your answer in the form

$$
a \cosh 1+b \sinh 1+c
$$

where a, b, c are integers.
6.

The diagram shows sketches, for $0 \leqslant \theta \leqslant \frac{\pi}{2}$, of the curve C_{1} having polar equation $r=\sin ^{2} \theta$ and the curve C_{2} having polar equation $r=1-\sin \theta$.
(a) Find the polar coordinates of the point A on C_{1} at which the tangent is perpendicular to the initial line.
(b) Find the area of the shaded region enclosed between C_{2} and the initial line.

TURN OVER

7. (a) (i) Assuming the derivatives of $\cosh x$ and $\sinh x$, show that the derivatives of $\operatorname{cosech} x$ and coth x are respectively $-\operatorname{cosech} x \operatorname{coth} x$ and $-\operatorname{cosech}^{2} x$.
(ii) Hence show that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}[\ln (\operatorname{cosech} x+\operatorname{coth} x)]=-\operatorname{cosech} x \tag{6}
\end{equation*}
$$

(b) (i) Show that the length L of the arc joining the points $(1,0)$ and $(e, 1)$ on the graph of $y=\ln x$ is given by

$$
\int_{1}^{\mathrm{e}} \frac{\sqrt{1+x^{2}}}{x} \mathrm{~d} x
$$

(ii) Use the substitution $x=\sinh u$ to show that

$$
L=\int_{\sinh ^{-1} 1}^{\sinh ^{-1} \mathrm{e}}(\operatorname{cosech} u+\sinh u) \mathrm{d} u .
$$

(iii) Use the result in (a)(ii) to determine the value of L correct to three significant figures.

