WJEC GCE ASIA level CBAC

0973/01

MATHEMATICS - C1

PURE MATHEMATICS
P.M. MONDAY, 13 May 2013
$1 / 2$ hours plus your additional time allowance

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:
a 12 page answer book;
a Formula Booklet.

INSTRUCTIONS TO CANDIDATES

Use black ink, black ball-point pen or your usual method.

Answer ALL questions.
Sufficient working must be shown to demonstrate the MATHEMATICAL method employed.

Calculators are NOT allowed for this paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

1. The points $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ have coordinates
$(8,4),(6,-5),(3,7)$, respectively. The line through A perpendicular to the line $B C$ intersects $B C$ at the point D.
(a) (i) Find the gradient of BC.
(ii) Show that the equation of $B C$ is

$$
4 x+y-19=0
$$

(iii) Find the equation of $A D$.
[7 marks]
(b) Show that the coordinates of D are $(4,3)$.
[2 marks]
(c) Find the length of $B D$.
[2 marks]
(d) The line $A D$ is extended to E so that D is the mid-point of $A E$. Find the coordinates of E.
[2 marks]
2. Simplify
(a) $\frac{2+5 \sqrt{7}}{4+\sqrt{7}}$
[4 marks]
(b) $\sqrt{360}-\sqrt{2} \times(\sqrt{5})^{3}-\frac{\sqrt{30} \times \sqrt{8}}{\sqrt{6}}$
[4 marks]
3. The curve \mathbf{C} has equation

$$
y=2 x^{2}-10 x+7
$$

(a) The point P has coordinates $(3,-5)$ and lies on C. Find the equation of the NORMAL to C at P.
[5 marks]
(b) The point Q lies on C and is such that the tangent to C at Q is parallel to the X-axis. Find the X-coordinate of Q.
[2 marks]
4.(a) Express $2 x^{2}-16 x-8$ in the form
$a(x+b)^{2}+c$, where the values of the constants $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{C} are to be found. [3 marks]
(b) USING YOUR ANSWER TO PART (a), find the least value of $X^{2}-8 X-4$ and the corresponding value of X.
[2 marks]
5.(a) Using the binomial theorem, write down and simplify the first three terms in the expansion of $(1+2 x)^{7}$ in ascending powers of X. [3 marks]
(b) Use your answer to part (a) to find the first three terms in the expansion of
$(1-4 x)(1+2 x)^{7}$ in ascending powers of X.
[3 marks]
6.(a) (i) Assuming that the quadratic equation

$$
(k+1) x^{2}+(4 k+1) x+(k-5)=0
$$

has TWO EQUAL roots, show that

$$
4 k^{2}+8 k+7=0
$$

(ii) Hence show that there are NO REAL values of \boldsymbol{K} such that the quadratic equation

$$
(k+1) x^{2}+(4 k+1) x+(k-5)=0
$$

has two equal roots.
[6 marks]
(b) Find the range of values of X satisfying the inequality

$$
4 x^{2}-9 x-9 \geqslant 0
$$

[3 marks]
7.(a) Given that $y=5 x^{2}+8 x-11$ find $\frac{d y}{d x}$ from first principles.
[5 marks]
(b) Differentiate $6 x^{\frac{2}{3}}+\frac{5}{x^{2}}-4$ with respect to X.
[2 marks]
8. Solve the equation

$$
8 x^{3}-2 x^{2}-7 x+3=0
$$

[6 marks]
9. The diagram shows a sketch of the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{X})$. The graph passes through the points $(-2,0)$ and $(6,0)$ and has a maximum point at $(2,4)$.

Sketch the following graphs, using a separate set of axes for each graph. In each case, you should indicate the coordinates of the stationary point and the coordinates of the points of intersection of the graph with the X-axis.
(a) $y=f(x+5)$
[3 marks]
(b) $y=f(-2 x)$
[3 marks]

9

10. The diagram shows a CLOSED box in the form of a cuboid. The length of the box is $2 \times \mathrm{Cm}$, its width is $X \mathbf{C M}$ and its height is $Y \mathbf{C M}$.

The total surface area of the box is $108 \mathrm{~cm}^{2}$.
(a) (i) Write down an equation involving X and Y and hence show that

$$
x y=18-\frac{2}{3} x^{2}
$$

(ii) Hence show that the volume VCm^{3} of the box is given by

$$
V=36 x-\frac{4}{3} x^{3}
$$

[3 marks]
(b) Find the maximum value of V, showing that the value you have found is a maximum value.

