GCE MARKING SCHEME

MATHEMATICS - M1-M3 \& S1-S3 AS/Advanced

SUMMER 2012

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2012 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Q		Mark	Notes	
1(a).				

Q	Solution	Mark	Notes
3.			
3(a)	Conservation of momentum $\begin{gathered} 6 \times 7+2 \times(-3)=6 \mathrm{v}_{\mathrm{A}}+2 \mathrm{v}_{\mathrm{B}} \\ \mathrm{v}_{\mathrm{B}}=2 \mathrm{v}_{\mathrm{A}} \\ 42-6=6 \mathrm{v}_{\mathrm{A}}+2 \times 2 \mathrm{v}_{\mathrm{A}} \\ 36=10 \mathrm{v}_{\mathrm{A}} \\ \mathrm{v}_{\mathrm{A}}=3.6 \\ \mathrm{v}_{\mathrm{B}}=7.2\left(\mathrm{~ms}^{-1}\right) \end{gathered}$	M1 A1 m1 A1	dim correct equation used
3 (b)	Restitution equation	M1	attempted, ft c's vs, e on correct side. No more than one sign error.
	$\begin{aligned} & 7.2-3.6=-e(-3-7) \\ & 3.6=10 \mathrm{e} \\ & e=\underline{0.36} \end{aligned}$	A1 A1	cao
3 (c)	$\begin{aligned} \mathrm{I} & =2 \times 7.2-2 \times(-3) \\ \mathrm{I} & =14.4+6 \\ \mathrm{I} & =\underline{20.4(\mathrm{Ns})} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	allow 6(7-3.6) cao

\begin{tabular}{|c|c|c|c|}
\hline Q \& Solution \& Mark \& Notes

\hline \multirow[t]{6}{*}{4.} \& Apply N2L to B
$$
\mathrm{Mg}-\mathrm{T}=\mathrm{Ma}
$$ \& $$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$ \& dim correct equation

\hline \& Apply N2L to A
$$
T-3 g=3 a
$$ \& M1 \& dim correct equation

\hline \& Adding
$$
\begin{aligned}
& \mathrm{Mg}-3 \mathrm{~g}=0.4 \mathrm{~g}(\mathrm{M}+3) \\
& \mathrm{M}-3=0.4 \mathrm{M}+1.2 \\
& 0.6 \mathrm{M}=4.2 \\
& \mathrm{M}=\underline{7}
\end{aligned}
$$ \& m1

A1 \& correct method. dep on both M's

\hline \& $$
\begin{aligned}
T & =3 \times 9.8+3 \times 0.4 \times 9.8 \\
T & =\underline{41.16(N)}
\end{aligned}
$$ \& A1 \& cao

\hline \& \[
$$
\begin{aligned}
& \text { Alternative solution } \\
& \text { Apply N2L to A } \\
& \mathrm{T}-3 \mathrm{~g}=3 \mathrm{a} \\
& \mathrm{~T}=3(9.8+0.4 \times 9.8) \\
& \mathrm{T}=\underline{41.16(\mathrm{~N})}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 | \& | dim. correct equation |
| :--- |
| cao |

\hline \& \[
$$
\begin{aligned}
& \text { Apply N2L to B } \\
& \mathrm{Mg}-\mathrm{T}=\mathrm{Ma} \\
& 9.8 \mathrm{M}-0.4 \times 9.8 \mathrm{M}=41.16 \\
& 5.88 \mathrm{M}=41.16 \\
& \mathrm{M}=\underline{7}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| m1 |
| A1 | \& | dim correct equation |
| :--- |
| cao |

\hline
\end{tabular}

Q	Solution	Mark	Notes
6.	Resolve vertically $T \sin \alpha=4 \mathrm{~g}$ Resolve horizontally $T \cos \alpha=30$ Dividing $\begin{aligned} & \tan \alpha=\frac{4 \times 9 \cdot 8}{30} \\ & \alpha=\underline{52.5(7)^{\circ}} \\ & T^{2}=(4 \times 9.8)^{2}+(30)^{2} \\ & T=\underline{49.36(\mathrm{~N})} \end{aligned}$	M1 A1 M1 A1 m1 A1 m1 A1	dep on both M's cao cao

Q	Solution		Mark

Q	Solution	Mark	Notes
9.			
9 (a)	Area from AG from AB (i) 24 1 6 (ii) 12 5 1 (iii) 18 5 4 Lamina 54 x y	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	correct distances correct distances correct distances areas all correct
	Moments about AG $\begin{aligned} & 54 x=24 \times 1+12 \times 5+18 \times 5 \\ & x=\frac{29}{0}=3.22 \end{aligned}$	M1 A1 A1	ft table if 2 or more B marks for distances gained. cao
	Moments about AB $\begin{aligned} & 54 y=24 \times 6+12 \times 1+18 \times 4 \\ & y=\frac{38}{9}=4.22 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	ft table cao
9 (b)	$\begin{aligned} \theta & =\tan ^{-1}\left(\frac{x}{12-y}\right) \\ & =\tan ^{-1}\left(\frac{29}{12 \times 9-38}\right) \\ \theta & =\underline{22.5^{\circ}} \end{aligned}$	M1 A1 A1	correct triangle correct equation, $\mathrm{ft} \mathrm{x}, \mathrm{y}$ ft x and y

Q	Solution	Mark	Notes
4.	$\begin{aligned} & T=\frac{P}{v}=\frac{75 \times 1000}{25} \\ & T=3000 \mathrm{~N} \end{aligned}$	M1	
$4(b)$	$\begin{aligned} & \text { N2L up plane } \\ & T-1200 g \operatorname{gsin} \alpha-600=1200 \mathrm{a} \\ & 1200 \mathrm{a}=3000-1200 \times 9.8 \times 0.1-600 \\ & \mathrm{a}=\underline{1.02\left(\mathrm{~ms}^{-2}\right)} \\ & T=\underline{90 \times 1000} \end{aligned}$	M1 A1 M1	dim correct, all forces A2 -1 each error cao
	N2L up plane $\begin{aligned} & T-1200 \mathrm{~g} \sin \alpha-600=1200 \mathrm{a} \\ & \mathrm{a}=0 \\ & \frac{90000}{v}=1776 \\ & v=\underline{50.7\left(\mathrm{~ms}^{-1}\right)} \end{aligned}$	M1 m1 A1	dim correct, all forces
5.	KE at $\mathrm{A}=0.5 \times 0.1 \times v^{2}$ PE at $\mathrm{A}=0.1 \times 9.8 \times 0.5$ PE at $\mathrm{B}=0.1 \times 9.8 \times 1.4$ WD against resistance $=6 \times 1.2$ Work-energy principle $\begin{aligned} & 0.05 v^{2}=7.2+0.1 \times 9.8 \times 0.9 \\ & v^{2}=161.64 \\ & v=\underline{12.7\left(\mathrm{~ms}^{-1}\right)} \end{aligned}$	B1 M1 A1 B1 M1 A1 A1	both or difference all terms included correct equation cao

Q	Solution	Mark	Notes
6(a).	$\begin{aligned} & u_{\mathrm{H}}=\mathrm{V} \cos \alpha(=0.8 \mathrm{~V}) \\ & \mathrm{u}_{\mathrm{V}}=\mathrm{V} \sin \alpha(=0.6 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	attempt to resolve both answers correct
6(b)	Consider horizontal motion $\begin{aligned} & 0.8 \mathrm{~V} \times \mathrm{T}=12 \\ & \mathrm{VT}=15 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	correctly obtained
$\sigma(\mathrm{c})$	Consider vertical motion $\begin{aligned} & \mathrm{s}=\mathrm{ut}+0.5 \mathrm{at}^{2} \text { with } \mathrm{s}=(\pm) 5.4, \mathrm{u}=0.6 \mathrm{~V}, \mathrm{t}=\mathrm{T} \\ & \mathrm{a}=(\pm) 9.8 \\ & 5.4=0.6 \mathrm{VT}-4.9 \mathrm{~T}^{2} \\ & -5.4=0.6 \times 15-4.9 \mathrm{~T}^{2} \\ & 4.9 \mathrm{~T}^{2}=14.4 \\ & \mathrm{~T}=\frac{12}{7} \\ & \frac{12}{7} \mathrm{~V}=15 \\ & \mathrm{~V}=\underline{8.75} \end{aligned}$	M1 A1 A1 A1	cao
6(d)	$\begin{aligned} & \text { Using } \mathrm{v}=\mathrm{u}+\text { at with } \mathrm{u}=5.25, \mathrm{a}=(\pm) 9.8, \\ & \mathrm{t}=\frac{12}{7} \\ & \mathrm{v}=5.25-9.8 \times \frac{12}{7} \\ & \mathrm{v}=-11.55 \\ & \mathrm{u}_{\mathrm{H}}=0.8 \times 8.75=7 \\ & \text { Speed }=\sqrt{11.55^{2}+7^{2}} \\ & \text { Speed }=\underline{13.5\left(\mathrm{~ms}^{-1}\right)} \end{aligned}$	M1 A1 B1 M1 A1	si, cao

Q	Solution	Mark	Notes
7.			
$7(\mathrm{a})$	Resolve vertically $\begin{aligned} & T \cos \theta=m g \\ & \theta=\cos ^{-1}\left(\frac{3 \times 9 \cdot 8}{88 \cdot 2}\right) \\ & \theta=\underline{70.5^{\circ}} \end{aligned}$	M1 A1 A1	
7(b)	N2L towards centre $T \sin \theta=m a$ $a=r \omega^{2}, \begin{aligned} & r=\frac{T \sin \theta}{m \omega^{2}} \end{aligned}$ length of string $=l$ $l \sin \theta=r$ $\left\{\begin{array}{l} l=\frac{r}{\sin \theta} \\ l=\frac{T}{m \omega^{2}}=\frac{88 \cdot 2}{3 \times 2 \cdot 8^{2}} \\ l=\underline{3.75(\mathrm{~m})} \end{array}\right.$	M1 A1 m1 m1 A1	attempted used
	Alternative Solution N2l towards centre $T \sin \theta=m a$ $a=r \omega^{2}$ $88.2 \sin \theta=3 \times r \times 2.8^{2}$ $r=3.53553 \mathrm{~m}$ $A P=\frac{r}{\sin \theta}$ $A P=3.75(\mathrm{~m})$	M1 A1 m1 m1 A1	attempted used cao

Q	Solution	Mark	Notes
$9(\mathrm{a})$.	Conservation of energy $\left\{\begin{array}{l} \frac{1}{2} \mathrm{mu}^{2}=\frac{1}{2} \mathrm{mv}^{2}+\operatorname{mgl}(1-\cos \theta) \\ \text { At max height, } \mathrm{v}=0, \cos \theta=\frac{2}{3}, \mathrm{l}=1.2 \\ \frac{1}{2} \mathrm{u}^{2}=9.8 \times 1.2\left(1-\frac{2}{3}\right) \\ \mathrm{u}^{2}=2 \times 9.8 \times 1.2 \times \frac{1}{3} \\ \mathrm{u}=\underline{2.8\left(\mathrm{~ms}^{-1}\right)} \\ \mathrm{v}^{2}=\mathrm{u}^{2}-2 \mathrm{gl}(1-\cos \theta) \\ \mathrm{v}^{2}=2.8^{2}-2 \times 9.8 \times 1.2(1-\cos \theta) \\ \mathrm{v}^{2}=23.52 \cos \theta-15.68 \end{array}\right.$	M1 A1 A1 m1 A1	cao
9 (b)	$\begin{aligned} & \mathrm{N} 2 \mathrm{~L} \text { towards centre } \\ & \mathrm{T}-\mathrm{mg} \cos \theta=\mathrm{mv}^{2} / l \\ & \mathrm{~T}=3 \times 9.8 \cos \theta+\frac{3}{1 \cdot 2}(23.52 \cos \theta-15.68) \\ & \mathrm{T}=29.4 \cos \theta+58.8 \cos \theta-39.2 \\ & \mathrm{~T}=\underline{88.2 \cos \theta-39.2} \end{aligned}$	M1 A1 m1 A1	cao
9 (c)	$\begin{aligned} & \text { Greatest value of } T \text { when } \cos \theta=1 \\ & T=88.2-39.2 \\ & T=\underline{49(N)} \\ & \text { Least value of } T \text { when } \cos \theta=\frac{2}{3} \\ & T=88.2 \times \frac{2}{3}-39.2 \\ & T=\underline{19.6(N)} \end{aligned}$	B1 B1	

Q	Solution	Mark	Notes
1(a)	$\left\{\begin{array}{l} \mathrm{N} 2 \mathrm{~L} \quad \frac{27000}{(t+3)^{2}}=600 \mathrm{a} \\ \frac{45}{(t+3)^{2}}=\frac{d v}{d t} \\ \mathrm{v}=-\frac{45}{(t+3)}(+\mathrm{C}) \end{array}\right.$ When $\mathrm{t}=0, \mathrm{v}=0$ $\begin{aligned} \mathrm{C} & =15 \\ \mathrm{v} & =15-\frac{45}{(t+3)} \end{aligned}$ As $\mathrm{t} \rightarrow \infty, \mathrm{v} \rightarrow 15$	M1 m1 A1 A1 m1 A1 A1	+/-, no additional terms use of $\mathrm{dv} / \mathrm{dt}$ $\mathrm{k} /(\mathrm{t}+3)$ completely correct use of initial conditions ft similar expression
1(b)	$\begin{aligned} & \mathrm{v}=\frac{d x}{d t}=15-\frac{45}{(t+3)} \\ & \mathrm{x}=15 \mathrm{t}-45 \ln (\mathrm{t}+3)(+\mathrm{C}) \\ & \mathrm{t}=0, \mathrm{x}=0 \quad \mathrm{C}=45 \ln 3 \\ & \mathrm{x}=15 \mathrm{t}+45 \ln \left(\frac{3}{t+3}\right) \end{aligned}$ When $\mathrm{t}=6 \quad \mathrm{x}=90+45 \ln \left(\frac{3}{9}\right)$ $\begin{aligned} & x=90-45 \ln (3) \\ & x=\underline{40.56(m)} \end{aligned}$	M1 A1 A1 m1 A1	ft similar expressions ft cao

Q	Solution	Mark	Notes
3.	Auxiliary equation $2 \mathrm{~m}^{2}+5 \mathrm{~m}+2=0$ $(2 m+1)(m+2)=0$ $\mathrm{m}=-0.5,-2$ CF is $\mathrm{x}=\mathrm{Ae}^{-0.5 \mathrm{t}}+\mathrm{Be}^{-2 \mathrm{t}}$ For PI, try $\mathrm{x}=\mathrm{at}+\mathrm{b}$ $\frac{d x}{d t}=\mathrm{a}$ $5 \mathrm{a}+2(\mathrm{at}+\mathrm{b})=6 \mathrm{t}+5$ Comparing coefficients $2 \mathrm{a}=6$ $a=3$ $15+2 \mathrm{~b}=5$ $b=-5$	B1 B1 B1 M1 A1 m1 A1	cao cao ft solutions for m both answers cao
	General solution is $x=A e^{-0.5 t}+B e^{-2 t}+3 t-5$ $\begin{aligned} & \text { When } \mathrm{t}=0, \mathrm{x}=3 \\ & 3=\mathrm{A}+\mathrm{B}-5 \\ & \mathrm{~A}+\mathrm{B}=8 \\ & \frac{d x}{d t}=-0.5 \mathrm{Ae}^{-0.5 \mathrm{t}}-2 \mathrm{Be}^{-2 \mathrm{t}}+3 \end{aligned}$	B1 M1 B1	ft CF and PI use of conditions in GS ft similar expressions
	$\begin{aligned} & \text { When } \mathrm{t}=0, \frac{d x}{d t}=2 \\ & 2=-0.5 \mathrm{~A}-2 \mathrm{~B}+3 \\ & 0.5 \mathrm{~A}+2 \mathrm{~B}=1 \\ & \mathrm{~A}+4 \mathrm{~B}=2 \\ & \mathrm{~A}+\mathrm{B}=8 \\ & 3 \mathrm{~B}=-6 \\ & \mathrm{~B}=-\underline{2} \\ & \mathrm{~A}=\underline{10} \end{aligned}$	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	cao cao

Q	Solution	Mark	Notes
4(a)	N2L $\quad \mathrm{F}=\mathrm{ma}$ $\left\{\begin{array}{l} \frac{4}{2 x+1}=0 \cdot 5 v \frac{d v}{d x} \\ \int \frac{8}{2 x+1} d x=\int v d v \\ 4 \ln \|2 x+1\|=\frac{1}{2} v^{2}+C \\ v^{2}=8 \ln \|2 x+1\|+C \end{array}\right.$ When $x=3, v=4$ $\left\lvert\, \begin{aligned} & 16=8 \ln 7+C \\ & C=16-8 \ln 7 \\ & v^{2}=8 \ln \left\|\frac{2 x+1}{7}\right\|+16 \end{aligned}\right.$ When $x=10 \quad v^{2}=8 \ln \left\|\frac{2 \times 10+1}{7}\right\|+16$ $\begin{aligned} & v^{2}=8 \ln 3+16 \\ & v=\underline{4.98\left(\mathrm{~ms}^{-1}\right)} \end{aligned}$	M1 m1 M1 A1 A1 m1 A1 A1	used, no extra term use of $v d v / d x$ separating variables $k \ln (2 x+1)$ all correct ft $k \ln (2 x+1)+C$
4(b)	$\left\{\begin{array}{l} v=6,6^{2}=8 \ln \left\|\frac{2 x+1}{7}\right\|+16 \\ \ln \left\|\frac{2 x+1}{7}\right\|=\frac{20}{8} \\ 2 x+1=7 \mathrm{e}^{5 / 2} \\ x=0.5\left[7 \mathrm{e}^{5 / 2}-1\right] \\ x=\underline{42.1(\mathrm{~m})} \end{array}\right.$	M1 m1 A1	allow similar expressions correct inversion cao

Q	Solution	Mark	Notes
5.	Using $\mathrm{v}=\mathrm{u}+$ at with $\mathrm{u}=0, \mathrm{a}=(\pm) 9.8, \mathrm{t}=2.5$ $\begin{aligned} & v=9.8 \times 0.5 \\ & v=4.9 \mathrm{~ms}^{-1} \end{aligned}$ Impulse = Change in momentum For A J = 5v For B J $=2 \times 4.9-2 \mathrm{v}$ Solving $\begin{aligned} & 5 \mathrm{v}=9.8-2 \mathrm{v} \\ & 7 \mathrm{v}=9.8 \\ & \mathrm{v}=\underline{1.4\left(\mathrm{~ms}^{-1}\right)} \\ & \mathrm{J}=5 \times 1.4 \\ & \mathrm{~J}=\underline{7(\mathrm{Ns})} \end{aligned}$	M1 A1 M1 B1 A1 m1 A1 A1	used cao cao

Q	Solution	Mark	Notes
6.(a)	Moments about B $\begin{aligned} & \mathrm{R} \times 2 \cos \alpha+\mathrm{F} \times 2 \sin \alpha=2100 \times 1 \cos \alpha \\ & \mathrm{R} \times 2 \times \frac{12}{13}+\frac{3}{4} \mathrm{R} \times 2 \times \frac{5}{13}=2100 \times \frac{12}{13} \\ & 24 \mathrm{R}+\frac{15}{2} \mathrm{R}=25200 \\ & \mathrm{R}=\underline{800(\mathrm{~N})} \end{aligned}$	M1 M1 A3 A1	dim correct equation, 3 terms, perp distance - 1 each error cao
6(b)	Resolve vertically $T \sin \theta=2100-\mathrm{R}$ $T \sin \theta=1300$ Resolve horizontally $\mathrm{T} \cos \theta=\mathrm{F}$ $T \cos \theta=\frac{3}{4} \times 800$ $T \cos \theta=600$ $\begin{aligned} T & =\sqrt{1300^{2}+600^{2}} \\ T & =\underline{1432(\mathrm{~N})} \end{aligned}$ $\theta=\tan ^{-1}\left(\frac{1300}{600}\right)$ $\theta=\underline{65.2^{\circ}}$	M1 A1 M1 A1 m1 A1 m1 A1	oe cao oe cao

4(a)(i) (ii) (b)	$\begin{aligned} \mathrm{P}(X=4) & =\binom{10}{4} \times 0.75^{4} \times 0.25^{6} \\ & =0.0162 \end{aligned}$ Let Y denote the number of games won by Dave so that Y is $\mathrm{B}(10,0.25)$. si $\begin{aligned} \text { We require } \mathrm{P}(Y \leq 4) \\ =0.9219 \end{aligned}$ The number of games lasting less than 1 hr , G , is $\begin{aligned} & \mathrm{B}(45,0.08) \approx \mathrm{Poi}(3.6) . \text { si } \\ & \mathrm{P}(G>6)=0.0733 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { M1 } \\ \text { m1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1A1 } \end{gathered}$	Accept $0.9965-0.9803$ or $0.0197-0.0035$ Award M1A0 for use of adjacent row or column. FT their mean
$5(\mathbf{a})$ (b)	$\begin{aligned} \mathrm{P}(\mathrm{CB}) & =\frac{6}{10} \times \frac{8}{100}+\frac{4}{10} \times \frac{3}{100} \\ & =0.06 \\ \mathrm{P}(\mathrm{~F} \mid \mathrm{CB})= & \frac{12 / 1000}{0.06} \\ & =0.2 \text { cao } \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { A1 } \\ \text { B1B1 } \\ \text { B1 } \end{gathered}$	M1 Use of Law of Total Prob (Accept tree diagram) FT denominator from (a) B1 num, B1 denom
6(a) (b) (c) (d)	$\left.\begin{array}{l} \frac{1}{6} \\ \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}=\frac{25}{216} \\ \frac{1}{6}, \frac{25}{216} \text { and } \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}\left(\frac{625}{7776}\right) \\ \operatorname{Prob} \end{array}=\frac{1 / 6}{1-25 / 36}\right) ~=\frac{6}{11} .$	B1 M1A1 M1A1 M1 A1	Award M1A1 if only $3^{\text {rd }}$ term given. FT their answer to (a)
$7(\mathbf{a})(\mathbf{i})$ (ii) (b)	$\begin{aligned} \mathrm{P}(X=10) & =\frac{\mathrm{e}^{-12} \times 12^{10}}{10!} \\ & =0.105 \\ \mathrm{P}(X>10) & =1-0.3472=0.6528 \end{aligned}$ Using tables, we see that $\mathrm{P}(X \leq 18)=0.9626$ He needs to take 18 jars.	M1 A1 M1A1 M1	Working must be shown. Accept 0.3472-0.2424 or 0.7576-0.6528 Award M1 for adjacent row/col Award M1A0 for 17 or 19

\begin{tabular}{|c|c|c|c|}
\hline Ques \& Solution \& Mark \& Notes \\
\hline \begin{tabular}{l}
1(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
E\left(X^{2}\right) \& =\operatorname{Var}(X)+[E(X)]^{2} \\
\& =27
\end{aligned}
\] \\
Similarly, \(E\left(Y^{2}\right)=39\)
\[
\begin{aligned}
\mathrm{E}(U) \& =\mathrm{E}(X) \mathrm{E}(Y) \\
\& =30 \\
E\left(X^{2} Y^{2}\right) \& =E\left(X^{2}\right) E\left(Y^{2}\right)=27 \times 39 \\
\operatorname{Var}(U) \& =E\left(X^{2} Y^{2}\right)-[E(X Y)]^{2} \\
\& =27 \times 39-30^{2}=153
\end{aligned}
\]
\end{tabular} \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\\
\text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& \begin{tabular}{l}
Award M1 for using formula \\
FT their \(E\left(X^{2}\right), E\left(Y^{2}\right)\) but not their \(E(X), E(Y)\) Award M1 for using formula
\end{tabular} \\
\hline \begin{tabular}{l}
2(a)(i) \\
(ii) \\
(b)(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{gathered}
z=\frac{4.5-4.4}{0.2}=0.5 \\
\mathrm{P}(X>4.5)=0.3085 \\
95^{\text {th }} \text { percentile }=\mu+1.645 \sigma \\
=4.73 \\
\mathrm{E}(2 Y-X)=0.8 \\
\operatorname{Var}(2 Y-X)=4 \operatorname{Var}(Y)+\operatorname{Var}(X) \\
=0.13 \\
z=\frac{0-0.8}{\sqrt{0.13}}=-2.22 \quad(\text { Accept } \pm)
\end{gathered}
\] \\
We require \(\mathrm{P}(2 Y-X<0)\) \\
Prob \(=0.0132\) \\
Let total weight \(=S\)
\[
\begin{gathered}
\mathrm{E}(S)=2 \times 4.4+3 \times 2.6=16.6 \\
\operatorname{Var}(S)=2 \times 0.04+3 \times 0.0225=0.1475 \\
z=\frac{16-16.6}{\sqrt{0.1475}}=-1.56 \\
\operatorname{Prob}=0.9406
\end{gathered}
\]
\end{tabular} \& \[
\begin{gathered}
\text { M1A1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\text { M1A1 } \\
\text { m1A1 } \\
\text { A1 }
\end{gathered}
\] \& \begin{tabular}{l}
Award only for \(\mu+z \sigma\) \\
FT their values from (b)(i)
\end{tabular} \\
\hline 3(a)

(b) \& | $\begin{aligned} & \bar{x}=\frac{69.9}{75} \quad(=0.932) \\ & \text { SE of } \bar{X}=\frac{0.1}{\sqrt{75}} \quad(=0.011547 \ldots) \\ & 90 \% \text { conf limits are } \\ & 0.932 \pm 1.645 \times 0.011547 \ldots \\ & \text { giving }[0.913,0.951] \end{aligned}$ |
| :--- |
| If the method for finding the confidence interval is repeated a large number of times, then 90% of the intervals obtained will contain μ (or equivalent) | \& \[

$$
\begin{gathered}
\hline \text { B1 } \\
\text { B1 } \\
\text { M1A1 } \\
\hline \text { A1 } \\
\hline \mathbf{B 1}
\end{gathered}
$$

\] \& | M1 correct form, A1 correct z. SE must have $\sqrt{75}$ in denom for M1. |
| :--- |
| Award B0 for any solution which suggests that the calculated interval contains μ with a probability of 0.9 |

\hline
\end{tabular}

4(a)	The total number of errors, X, is $\operatorname{Poi}(8)$ $\mathrm{P}(X<5)=1-0.9004=0.0996$	$\begin{gathered} \text { B1 } \\ \text { M1A1 } \end{gathered}$	Award M1A0 for use of adjacent row/column
(b)(i)	$H_{0}: \mu=0.8 ; H_{1}: \mu<0.8$	B1	
(ii)	Under H_{0}, number of errors is $\operatorname{Poi}(64) \approx \mathrm{N}(64,64)$. $\begin{aligned} z & =\frac{60.5-64}{8} \\ & =-0.4375 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1A1 } \\ \text { A1 } \end{gathered}$	Award M1A0A1A1 for incorrect or no continuity correction No c/c gives $z=-0.5, p=0.31$ Incorrect c/c gives $z=-0.5625$, $p=0.29$
	$p \text {-value }=0.33$ Insufficient evidence to reject $\mathrm{H}_{0} /$ Accept H_{0}	$\begin{aligned} & \mathbf{A 1} \\ & \mathbf{A 1} \end{aligned}$	FT their p-value
5(a) (b)	$\begin{gathered} H_{0}: \mu_{D}=\mu_{F} ; H_{1}: \mu_{D} \neq \mu_{F} \\ \bar{x}_{D}=\frac{890.4}{6}(=148.4) ; \bar{x}_{F}=\frac{879}{6}(=146.5) \mathrm{si} \end{gathered}$ SE of difference of means $=\sqrt{\frac{1.5^{2}}{6}+\frac{1.5^{2}}{6}}(0.866 .$. $\begin{aligned} \text { Test statistic } & =\frac{148.4-146.5}{0.866 . .} \\ & =2.19 \end{aligned}$ Prob from tables $=0.01426$ $p \text {-value }=0.02852$ Strong evidence that there is a difference in mean distances for the two players. OR Strong evidence that David's mean is larger than Frank's mean.	B1	
			FT arithmetic slip in evaluating means
		M1A1	
		$\begin{gathered} \text { M1A1 } \\ \text { A1 } \end{gathered}$	
		A1	
		A1	FT from previous line
		A1	FT on their p-value

3(a)(i)	$\hat{p}=0.45$	B1	
(ii)	$\begin{equation*} \mathrm{ESE}=\sqrt{\frac{0.45 \times 0.55}{120}}=0.0454 . . \tag{si} \end{equation*}$ 95% confidence limits are $0.45 \pm 1.96 \times 0.0454$ giving [0.361,0.539]	$\begin{gathered} \text { M1A1 } \\ \text { M1A1 } \\ \text { A1 } \end{gathered}$	
(b)(i)	This time, $\hat{p}=\frac{0.455+0.581}{2}=0.518$	M1A1	
(ii)	$\text { Width of } \begin{aligned} \mathrm{CI} & =2 \times 1.645 \sqrt{\frac{0.518 \times 0.482}{n}} \\ & =0.581-0.455=0.126 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	
	$\begin{aligned} n & =\left(\frac{3.29}{0.126}\right)^{2} \times 0.518 \times 0.482 \\ & =170 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Attempting to solve for n
(iii)	$x=170 \times 0.518=88$	B1	FT their n
4(a)	$H_{0}: \mu_{A}=\mu_{B}: H_{1}: \mu_{A} \neq \mu_{B}$	B1	
(b)	$\bar{x}=51.3 ; \bar{y}=51.8$	B1	
	$\begin{aligned} & s_{x}^{2}=\frac{131659}{49}-\frac{2565^{2}}{49 \times 50}=1.5204 \ldots \\ & s_{y}^{2}=\frac{134232}{49}-\frac{2590^{2}}{49 \times 50}=1.4285 \ldots \end{aligned}$ [Accept division by 50 giving $1.49 \ldots$ and 1.4]	M1A1 A1	
	$\begin{aligned} \mathrm{SE} & =\sqrt{\frac{1.5204 . .}{50}+\frac{1.4285}{50}} \\ & =0.2428 . . \quad(0.2404 . .) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
	$\begin{aligned} \text { Test stat } & =\frac{51.3-51.8}{0.2428 . .} \\ & =2.06(2.08) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
	$p \text {-value }=0.039(0.038)$ Strong evidence for believing there is a difference in mean distances travelled (or that the Model A mean is less than the Model B mean).	A1 A1	FT their p-value

\begin{tabular}{|c|c|c|c|}
\hline 5(a)

(b) \& $$
\begin{gathered}
\sum x=15, \sum x^{2}=55, \sum y=345.5, \sum x y=1131.1 \\
S_{x y}=1131.1-15 \times 345.5 / 6=267.35 \\
S_{x x}=55-15^{2} / 6=17.5 \\
b=\frac{267.35}{17.5}=15.3 \\
a=\frac{345.5-15 \times 15.277 . .}{6}=19.4(\text { accept } 19.3) \\
\begin{array}{l}
\text { SE of } b=\frac{0.75}{\sqrt{17.5}} \quad(0.179 \ldots) \\
99 \% \text { confidence limits for } \beta \text { are } \\
15.277 \pm 2.576 \times 0.179 . . \\
\text { giving }[14.8,15.7]
\end{array}
\end{gathered}
$$ \& B2

B1
B1
M1
A1
M1
A1
M1A1
M1A1

A1 \& | Minus 1 each error. |
| :--- |
| FT I error in sums. |
| FT their values from (a) |

\hline 6(a) \& \[
$$
\begin{aligned}
\mathrm{E}(X) & =\int_{0}^{a} x \times \frac{2 x}{a^{2}} \mathrm{~d} x \\
& =\left[\frac{2 x^{3}}{3 a^{2}}\right]_{0}^{a} \\
& =\frac{2 a}{3} \\
\mathrm{E}\left(X^{2}\right) & =\int_{-1}^{1} x^{2} \times \frac{2 x}{a^{2}} \mathrm{~d} x \\
& =\left[\frac{2 x^{4}}{4 a^{2}}\right]_{0}^{a} \\
& =\frac{a^{2}}{2} \\
\operatorname{Var}(X) & =\frac{a^{2}}{2}-\frac{4 a^{2}}{9} \\
& =\frac{a^{2}}{18}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| M1 |
| A1 |
| A1 |
| A1 | \& | Limits not required in this line |
| :--- |
| Limits not required in this line |

\hline
\end{tabular}

(b)(i)	$\begin{aligned} & \mathrm{E}(U)=c \mathrm{E}(\bar{X}) \quad(\text { or } c \mathrm{E}(X))=c \times \frac{2 a}{3} \\ & \begin{aligned} E(U)=a & \Rightarrow c=\frac{3}{2} \\ \operatorname{Var}(U) & =\frac{9}{4} \operatorname{Var}(\bar{X}) \\ & =\frac{9}{4} \times \frac{a^{2}}{18 n} \\ = & \frac{a^{2}}{8 n} \end{aligned} \end{aligned}$	M1 A1 M1 A1 A1	Penalise the omission of E once in the question
(ii)	$\begin{aligned} & \mathrm{E}(V)=d \mathrm{E}(Y)=d \times \frac{2 n a}{2 n+1} \\ & E(V)=a \Rightarrow d=\frac{2 n+1}{2 n} \end{aligned}$	M1 A1	
	$\begin{aligned} & \operatorname{Var}(V)=\left(\frac{2 n+1}{2 n}\right)^{2} \operatorname{Var}(Y) \\ & =\left(\frac{2 n+1}{2 n}\right)^{2} \times\left(\frac{n a^{2}}{(n+1)(2 n+1)^{2}}\right) \\ & =\frac{a^{2}}{4 n(n+1)} \end{aligned}$	M1 A1 A1	
(iii)	$\begin{aligned} & \frac{\operatorname{Var}(U)}{\operatorname{Var}(V)}=\frac{a^{2}}{8 n} \div \frac{a^{2}}{4 n(n+1)} \\ & \quad=\frac{n+1}{2} \end{aligned}$ V is the better estimator Because (for $n>1$) it has the smaller variance	B1 B1 B1	

WJEC
$\frac{\text { WJEC }}{\text { CBAC }}$
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

