GCE MARKING SCHEME

MATHEMATICS - C1-C4 \& FP1-FP3 AS/Advanced

SUMMER 2012

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2012 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

C1

1. (a) Gradient of $A B=\underline{\text { increase in } y}$ M1increase in xGradient of $A B=-4 / 3 \quad$ (or equivalent) A1
(b) A correct method for finding C M1
$C(-1,3)$ A1
(c) Use of $m_{A B} \times m_{L}=-1$ to find gradient of L M1
A correct method for finding the equation of L using candidate'scoordinates for C and candidate's gradient for L.M1
Equation of $L: \quad y-3=\frac{3}{4}[x-(-1)] \quad$ (or equivalent)(f.t. candidate's coordinates for C and candidate's gradient for $A B$) A1Equation of $L: \quad 3 x-4 y+15=0 \quad$ (convincing, c.a.o.) A1
(d) (i) Substituting $x=7, y=k$ in equation of L M1
$k=9$ A1
(ii) A correct method for finding the length of $C A(D A)$ M1
$C A=5$ (f.t. candidate's coordinates for C) A1 $D A=\sqrt{ } 125$ A1
(iii) $\operatorname{Sin} A D C=\frac{C A}{D A}=\frac{5}{\sqrt{125}}$
(f.t. candidate's derived values for $C A$ and $D A$) M1
$\operatorname{Sin} A D C=\frac{C A}{D A}=\frac{1}{\sqrt{5}}$ (c.a.o.) A1
2.

(a) $\frac{10}{7+2 \sqrt{ } 11}=\frac{10(7-2 \sqrt{ } 11)}{(7+2 \sqrt{ } 11)(7-2 \sqrt{ } 11)}$

Denominator: $49-44$
$\frac{10}{7+2 \sqrt{ } 11}=\frac{10(7-2 \sqrt{ } 11)}{5}=2(7-2 \sqrt{ } 11)=14-4 \sqrt{ } 11 \quad$ (c.a.o.) A

Special case

If M1 not gained, allow B1 for correctly simplified denominator
following multiplication of top and bottom by $7+2 \sqrt{ } 11$
(b) $\quad(4 \sqrt{ } 3)^{2}=48$
$\sqrt{ } 8 \times \sqrt{ } 50=20$
B1
$\frac{5 \sqrt{63}}{\sqrt{7}}=15$
B1
$(4 \sqrt{ } 3)^{2}-(\sqrt{ } 8 \times \sqrt{ } 50)-\frac{5 \sqrt{63}}{\sqrt{7}}=13$
(c.a.o.)

B1
3.
(a) $\underline{\mathrm{d} y}=4 x-11 \quad$ (an attempt to differentiate, at least
$\mathrm{d} x \quad$ one non-zero term correct) M1
An attempt to substitute $x=2$ in candidate's expression for $\frac{\mathrm{d} y}{\mathrm{~d} x} \quad \mathrm{~m} 1$
Use of candidate's numerical value for $\underline{\mathrm{d} y}$ as gradient of tangent at P
$\mathrm{d} x$
m1
Equation of tangent at $P: \quad y-(-1)=-3(x-2) \quad$ (or equivalent)
(c.a.o.) A1
(b) Gradient of tangent at $Q=9$

B1
An attempt to equate candidate's expression for $\underline{\mathrm{d} y}$ and candidate's $\mathrm{d} x$
derived value for gradient of tangent at Q
$4 x-11=9 \Rightarrow x=5$
(f.t. one error in candidate's expression for $\underline{d y}$)
4. $(1-2 x)^{6}=1-12 x+60 x^{2}-160 x^{3}+\ldots$

B1 B1 B1 B1
(- 1 for further incorrect simplification)
5.
(a) $\quad \begin{aligned} a & =3 \\ b & =-\end{aligned}$ B1
$b=-2$ B1
$c=17$
B1
(b) Stationary value $=17 \quad$ (f.t. candidate's value for c)

B1
This is a minimum
6. (a) An expression for $b^{2}-4 a c$, with at least two of a, b, c correct
$b^{2}-4 a c=(2 k-1)^{2}-4\left(k^{2}-k+2\right)$
$b^{2}-4 a c=-7 \quad$ (c.a.o.)
candidate's value for $b^{2}-4 a c<0(\Rightarrow$ no real roots $)$
(b) Finding critical values $x=-6, x=2 / 3$

A statement (mathematical or otherwise) to the effect that $x<-6$ or $\frac{2}{3}<x$

$$
\text { (f.t critical values } \pm 6, \pm^{2 / 3} \text { only) B2 }
$$

Deduct 1 mark for each of the following errors the use of \leq rather than $<$ the use of the word 'and' instead of the word 'or'
7. (a) $y+\delta y=3(x+\delta x)^{2}-7(x+\delta x)+5$

B1
Subtracting y from above to find δy
$\delta y=6 x \delta x+3(\delta x)^{2}-7 \delta x$
Dividing by δx and letting $\delta x \rightarrow 0$

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{limit}_{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=6 x-7 \tag{c.a.o.}
\end{equation*}
$$

(b) Required derivative $=\frac{2}{3} \times 1 / 4 \times x^{-3 / 4}+12 \times(-3) \times x^{-4} \quad$ B1, B1
8. (a) Attempting to find $f(r)=0$ for some value of r
$f(x)=(x-2)\left(6 x^{2}+a x+b\right)$ with one of a, b correct

$$
f(x)=(x-2)\left(6 x^{2}-7 x-3\right)
$$

$$
\text { (f.t. for factors } 3 x \pm 1,2 x \pm 3 \text {) }
$$

Special case

Candidates who, after having found $x-2$ as one factor, then find one of the remaining factors by using e.g. the factor theorem, are awarded B1 for final 4 marks
(b) Use of $g(a)=11 \quad$ M1
$a^{3}-53=11 \Rightarrow a=4$
9. (a)

Concave up curve and y-coordinate of minimum $=-7$ B1
x-coordinate of minimum $=3$ B1
Both points of intersection with x-axis
(b)

Concave up curve and y-coordinate of minimum $=-7$
x-coordinate of minimum $=-4$
Both points of intersection with x-axis
10. (a) $\underline{\mathrm{d} y}=3 x^{2}+6 x$
d x
Putting derived $\underline{\mathrm{d} y}=0$
M1
$x=0,-2 \quad$ (both correct)
(f.t. candidate's $\underline{\mathrm{d} y}$) A1 dx
Stationary points are $(0,-1)$ and $(-2,3)$ (both correct) (c.a.o) A1 A correct method for finding nature of stationary points yielding either $(0,-1)$ is a minimum point or $(-2,3)$ is a maximum point (f.t. candidate's derived values) M1 Correct conclusion for other point
(f.t. candidate's derived values) A1
(b)

$$
\begin{array}{ll}
\text { Graph in shape of a positive cubic with two turning points } & \text { M1 } \\
\text { Correct marking of both stationary points } \\
\text { (f.t. candidate's derived maximum and minimum points) } & \text { A1 }
\end{array}
$$

(c) One positive root
(f.t. the number of times the candidate's curve crosses the positive x-axis) B1

C2

1.

1	0.5
1.25	0.53935989
1.5	0.603022689
1.75	0.718421208
2	1

(5 values correct) B2
(3 or 4 values correct) B1
Correct formula with $h=0.25$
$I \approx \frac{0.25}{2} \times\{0.5+1+2(0.53935989+0.603022689+0.718421208)\}$
$I \approx 5 \cdot 221607574 \div 8$
$I \approx 0.652700946$
$I \approx 0.6527 \quad$ (f.t. one slip) A1
Special case for candidates who put $h=0.2$

1	0.5
1.2	0.52999894
1.4	0.573539334
1.6	0.640184399
1.8	0.753778361
2	1

(all values correct) B1
Correct formula with $h=0.2 \quad$ M1
$I \approx \frac{0 \cdot 2}{2} \times\{0 \cdot 5+1+2(0 \cdot 52999894+0 \cdot 573539334+\quad 0 \cdot 640184399+0.753778361)\}$
$I \approx 6 \cdot 495002069 \div 10$
$I \approx 0.6495002069$
$I \approx 0.6495 \quad$ (f.t. one slip) A1
Note: Answer only with no working earns 0 marks
2. (a) $10 \cos ^{2} \theta+3 \cos \theta=4\left(1-\cos ^{2} \theta\right)-2$

$$
\text { (correct use of } \sin ^{2} \theta=1-\cos ^{2} \theta \text {) M1 }
$$

An attempt to collect terms, form and solve quadratic equation in $\cos \theta$, either by using the quadratic formula or by getting the expression into the form $(a \cos \theta+b)(c \cos \theta+d)$, with $a \times c=$ candidate's coefficient of $\cos ^{2} \theta$ and $b \times d=$ candidate's constant m1
$14 \cos ^{2} \theta+3 \cos \theta-2=0 \Rightarrow(2 \cos \theta+1)(7 \cos \theta-2)=0$
$\Rightarrow \cos \theta=\frac{2}{7}, \quad \cos \theta=-\frac{1}{2}$
$\theta=73 \cdot 40^{\circ}, 286 \cdot 60^{\circ}$ B1
$\theta=120^{\circ}, 240^{\circ}$
B1 B1
Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range. $\cos \theta=+,-$, f.t. for 3 marks, $\cos \theta=-$, - , f.t. for 2 marks $\cos \theta=+,+$, f.t. for 1 mark
(b) $3 x-21^{\circ}=-54^{\circ}, 234^{\circ}, 306^{\circ}, 594 \quad$ (one value) B1 $x=85^{\circ}, 109^{\circ}$

B1 B1
Note: Subtract (from final two marks) 1 mark for each additional root in range, ignore roots outside range.
(c) Use of $\underline{\sin \phi}=\tan \phi$
$\tan \phi=0.2$
$\phi=11 \cdot 31^{\circ}, 191 \cdot 31^{\circ} \quad($ f.t $\tan \phi=a)$
B1
3. (a) $11^{2}=5^{2}+x^{2}-2 \times 5 \times x \times^{2 / 5} \quad$ (correct use of cos rule) M1

An attempt to collect terms, form and solve quadratic equation in x, either by using the quadratic formula or by getting the expression into the form $(x+b)(x+d)$, with $b \times d=$ candidate's constant
m1
$x^{2}-4 x-96=0 \Rightarrow x=12$
(c.a.o.) A1
(b) $\quad \frac{\sin X Z Y}{32}=\frac{\sin 19^{\circ}}{15}$
(substituting the correct values in the correct places in the sin rule) M1
$X Z Y=44^{\circ}, 136^{\circ}$
(at least one value) A1
Use of angle sum of a triangle $=180^{\circ}$
$Y X Z=117^{\circ}, 25^{\circ} \quad$ (both values)
(f.t. candidate's values for $X Z Y$ provided both M's awarded) A1
4.
(a) $S_{n}=a+[a+d]+\ldots+[a+(n-1) d]$
(at least 3 terms, one at each end)
$S_{n}=[a+(n-1) d]+[a+(n-2) d]+\ldots+a$
Either:
$2 S_{n}=[a+a+(n-1) d]+[a+a+(n-1) d]+\ldots+[a+a+(n-1) d]$
Or:
$2 S_{n}=[a+a+(n-1) d] \quad n$ times M1
$2 S_{n}=n[2 a+(n-1) d]$
$S_{n}=\frac{n}{2}[2 a+(n-1) d] \quad$ (convincing)
(b) $\quad a+2 d+a+3 d+a+9 d=79$

B1
$a+5 d+a+6 d=61$ B1
An attempt to solve the candidate's linear equations simultaneously by eliminating one unknown
$a=3, d=5$ (both values)
(c.a.o.) A1
(c) $\quad a=15, d=-2$ B1
$S_{n}=\frac{n}{2}[2 \times 15+(n-1)(-2)]$
(f.t. candidate's d) M1
$S_{n}=n(16-n)$
(c.a.o.) A1
5.
(a) $a+a r=72$ B1
$a+a r^{2}=120$ B1
An attempt to solve candidate's equations simultaneously by correctly eliminating a
$3 r^{2}-5 r-2=0 \quad$ (convincing)
(b) An attempt to solve quadratic equation in r, either by using the quadratic formula or by getting the expression into the form $(a r+b)(c r+d)$, with $a \times c=3$ and $b \times d=-2$
$(3 r+1)(r-2)=0 \Rightarrow r=-1 / 3$
$a \times\left(1-\frac{1}{3}\right)=72 \Rightarrow a=108$ (f.t. candidate's derived value for r) B1
$S_{\infty}=\frac{108}{1-(-1 / 3)}$
(correct use of formula for S_{∞}, f.t. candidate's
derived values for r and a) M1
$S_{\infty}=81$
(c.a.o.) A1
6. (a) $3 \times \frac{x^{3 / 2}}{3 / 2}-2 \times \frac{x^{-2 / 3}}{-2 / 3}+c$

B1 B1
(-1 if no constant term present)
(b) (i) $36-x^{2}=5 x$ M1
An attempt to rewrite and solve quadratic equation in x, either by using the quadratic formula or by getting the expression into the form $(x+a)(x+b)$, with $a \times b=-36 \quad \mathrm{~m} 1$ $(x-4)(x+9)=0 \Rightarrow A(4,20) \quad$ (c.a.o.) A 1 $B(6,0)$ B1
(ii) Area of triangle $=40 \quad$ (f.t. candidate's coordinates for $A) \quad \mathrm{B} 1$

Area under curve $=\int_{4}^{6}\left(36-x^{2}\right) \mathrm{d} x \quad$ (use of integration) M1
$\begin{array}{rlr}\int 36 \mathrm{~d} x=36 x \text { and } \int_{j} x^{2} \mathrm{~d} x=\frac{x^{3}}{3} & \text { B1 } \\ \begin{array}{rlr}\text { Area under curve } & =[(216-216 / 3)-(144-64 / 3)] & \\ & =64 / 3 & \text { (substitution of candidate's limits) } \\ & \mathrm{ml}\end{array}\end{array}$
Use of candidate's, x_{A}, x_{B} as limits and trying to find total area by adding area of triangle and area under curve m1 Total area $=40+64 / 3=184 / 3$
(c.a.o.) A1
7. (a) Let $p=\log _{a} x$

Then $x=a^{p} \quad$ (relationship between log and power) B1
$x^{n}=a^{p n}$
(the laws of indices)
B1
$\therefore \log _{a} x^{n}=p n \quad$ (relationship between \log and power)
$\therefore \log _{a} x^{n}=p n=n \log _{a} x$
(convincing) B1
(b) Either:
$(x / 2-3) \log _{10} 9=\log _{10} 6$
(taking logs on both sides and using the power law) M1
$x=\underline{2\left(\log _{10} \underline{6+3} \log _{10} 9\right)} \quad \mathrm{A} 1$ $\log _{10} 9$
$x=7.631 \quad$ (f.t. one slip, see below) A1
Or:
$x / 2-3=\log _{9} 6 \quad$ (rewriting as a \log equation) M1
$x=2\left(\log _{9} 6+3\right)$
$x=7.631 \quad$ (f.t. one slip, see below)
A1
Note: an answer of $x=-4.369$ from $\left.x=\frac{2\left(\log _{10}\right.}{\log _{10} 9}-3 \log _{10} 9\right)$
earns M1 A0 A1
an answer of $x=3.815$ from $x=\underline{\log }_{\underline{10}} \frac{6+3 \log _{10}}{\log _{10} 9} \underline{9}$
earns M1 A0 A1
an answer of $x=1.908$ from $x=\left(\log _{10} \frac{6+3 \log _{10}}{2 \log _{10} 9} \underline{9}\right)$
earns M1 A0 A1
an answer of $x=4.631$ from $x=\underline{2 \log _{10}} \frac{6+3 \log _{10}}{\log _{10} 9}$
earns M1 A0 A1
Note: Answer only with no working earns 0 marks
(c) $\log _{a}(x-2)+\log _{a}(4 x+1)=\log _{a}[(x-2)(4 x+1)] \quad$ (addition law) B1 $2 \log _{a}(2 x-3)=\log _{a}(2 x-3)^{2} \quad$ (power law) B1 $(x-2)(4 x+1)=(2 x-3)^{2} \quad$ (removing logs) M1 $x=2 \cdot 2$
(c.a.o.) A1

Note: Answer only with no working earns 0 marks
8. (a) $A(2,-3)$ B1
A correct method for finding the radius M1
Radius $=\sqrt{ } 12$ A1
(b) $A T^{2}=61$ (f.t. candidate's coordinates for A)B1
Use of $R T^{2}=A T^{2}-A R^{2}$ M1
$R T=7$ (f.t. candidate's radius and coordinates for A) A1
9. Area of sector $P O Q=\frac{1}{2} \times r^{2} \times 1 \cdot 12 \quad$ B1

Area of triangle $P O Q=\frac{1}{2} \times r^{2} \times \sin (1 \cdot 12) \quad$ B1 $10 \cdot 35=\frac{1}{2} \times r^{2} \times 1 \cdot 12-\frac{1}{2} \times r^{2} \times \sin (1 \cdot 12)$
(f.t. candidate's expressions for area of sector and area of triangle) M1
$r^{2}=\frac{2 \times 10.35}{(1.12-0.9)}$
(o.e.)
(c.a.o.)
A1
$r=9.7 \quad$ (f.t. one numerical slip) A1

C3

1.

(a) 0
${ }_{0}^{0} 25$
1
$0 \cdot 5 \quad 1 \cdot 284025417$
1•064494459
$0.75 \quad 1.755054657$ (5 values correct) B2
$1 \quad 2 \cdot 718281828 \quad$ (3 or 4 values correct) B1
Correct formula with $h=0.25$ M1
$I \approx \underline{0 \cdot 25} \times\{1+2 \cdot 718281828+4(1 \cdot 064494459+1 \cdot 755054657)$
$3+2(1 \cdot 284025417)\}$
$I \approx 17.56452913 \times 0.25 \div 3$
$I \approx 1.463710761$
$I \approx 1.4637$
(f.t. one slip)

Note: Answer only with no working shown earns 0 marks
(b)

$\int_{0}^{1} \mathrm{e}^{x^{2}+3} \mathrm{~d} x=29 \cdot 399 \quad$ (f.t. candidate's answer to (a)) A1

Note: Answer only with no working shown earns $\mathbf{0}$ marks
2.
(a) $\phi=360^{\circ}-\theta$ or $\phi=-\theta$ and noting that $\cos \theta=\cos \phi$
(b) $13 \tan ^{2} \theta=5\left(1+\tan ^{2} \theta\right)+6 \tan \theta$.

$$
\text { (correct use of } \sec ^{2} \theta=1+\tan ^{2} \theta \text {) }
$$

An attempt to collect terms, form and solve quadratic equation in $\tan \theta$, either by using the quadratic formula or by getting the expression into the form $(a \tan \theta+b)(c \tan \theta+d)$, with $a \times c=$ candidate's coefficient of $\tan ^{2} \theta$ and $b \times d=$ candidate's constant
$8 \tan ^{2} \theta-6 \tan \theta-5=0 \Rightarrow(4 \tan \theta-5)(2 \tan \theta+1)=0$
$\Rightarrow \tan \theta=\frac{5}{4}, \tan \theta=-\frac{1}{2}$
(c.a.o.) A1
$\theta=51 \cdot 34^{\circ}, 231 \cdot 34^{\circ}$
B1
$\theta=153.43^{\circ}, 333.43^{\circ}$
Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range. $\tan \theta=+,-$, f.t. for 3 marks, $\tan \theta=-$, - , f.t. for 2 marks $\tan \theta=+,+$, f.t. for 1 mark
3. (a) $\underline{\mathrm{d}}\left(x^{3}\right)=3 x^{2}$
$\underline{\mathrm{d}}(-3 x-2)=-3$
$\mathrm{d} x$
$\mathrm{d} x$
$\underline{\mathrm{d}}\left(-4 x^{2} y\right)=-4 x^{2} \underline{\mathrm{~d}} \underline{y}-8 x y$
B1
$\mathrm{d} x \quad \mathrm{~d} x$
$\underline{\mathrm{d}}\left(2 y^{3}\right)=6 y^{2} \underline{\mathrm{~d} y}$
B1
$\mathrm{d} x \quad \mathrm{~d} x$
$x=3, y=1 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{6}{42}=\frac{1}{7}$
(c.a.o.) B1
(b) (i) Differentiating $\sin a t$ and $\cos a t$ with respect to t, at least one correct candidate's x-derivative $=a \cos a t$, candidate's y-derivative $=-a \sin a t$ (both values)
(ii) $\mathrm{d} x$

4. $f(x)=\cos x-5 x+2$

An attempt to check values or signs of $f(x)$ at $x=0, x=\pi / 4 \quad$ M1 $f(0)=3>0, f(\pi / 4)=-1 \cdot 22<0$
Change of sign $\Rightarrow f(x)=0$ has root in $(0, \pi / 4)$
$x_{0}=0.6$
$x_{1}=0.565067123$
B1
$x_{2}=0.568910532$
$x_{3}=0.568497677$
$x_{4}=0.568542145=0.56854 \quad$ (x_{4} correct to 5 decimal places) B1
An attempt to check values or signs of $f(x)$ at $x=0.568535, x=0.568545$ M1 $f(0.568535)=1.563 \times 10^{-5}>0, f(0.568545)=-3.975 \times 10^{-5}<0 \quad$ A1
Change of sign $\Rightarrow \alpha=0.56854$ correct to five decimal places A1
Note: 'change of sign' must appear at least once
5. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{a+b x}{7+2 x-3 x^{2}}$
(including $a=1, b=0$)
M1

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2-6 x}{7+2 x-3 x^{2}}
$$

(b) $\quad \underline{\mathrm{d} y}=\mathrm{e}^{\tan x} \times f(x)$
$(f(x) \neq 1,0)$
M1
$\mathrm{d} x$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{\tan x} \times \sec ^{2} x$
A1
(c) $\quad \underline{\mathrm{d} y}=5 x^{2} \times f(x)+\sin ^{-1} x \times g(x) \quad(f(x), g(x) \neq 1,0) \quad$ M1
$\mathrm{d} x$
$\underline{\mathrm{d} y}=5 x^{2} \times f(x)+\sin ^{-1} x \times g(x)$

$$
\begin{array}{ll}
\mathrm{d} x & \left(\text { either } f(x)=\frac{1}{\sqrt{1-x^{2}}} \text { or } g(x)=10 x\right) \\
\frac{\mathrm{d} y}{\mathrm{~d} x}=5 x^{2} \times \frac{1}{\sqrt{1-x^{2}}}+10 x \times \sin ^{-1} x
\end{array}
$$

6.

(a)
(i) J $\int 3 \mathrm{e}^{2-x / 4} \mathrm{~d} x=-4 \times 3 \mathrm{e}^{2-x / 4}+c$
(ii) $\int \frac{9}{(2 x-3)^{6}} \mathrm{~d} x=\frac{k \times 9 \times(2 x-3)^{-5}}{-5}+c \quad\left(k=1,2,{ }^{1} / 2\right) \quad$ M1 $\int \frac{9}{(2 x-3)^{6}} \mathrm{~d} x=\frac{9 \times(2 x-3)^{-5}}{-5 \times 2}+c$
(iii) $\int \frac{7}{3 x+1} \mathrm{~d} x=k \times 7 \times \ln |3 x+1|+c \quad(k=1,3,1 / 3) \quad$ M1
$\int \frac{7}{3 x+1} \mathrm{~d} x={ }^{7} / 3 \times \ln |3 x+1|+c$

Note: The omission of the constant of integration is only penalised once.
(b) $\begin{array}{lll}\int \sin 2 x \mathrm{~d} x=k \times \cos 2 x & \left(k=-1,-2, \frac{1}{2},-\frac{1}{2}\right) & \text { M1 } \\ \int_{j} \sin 2 x \mathrm{~d} x=-\frac{1}{2} \times \cos 2 x & & \text { A1 } \\ k \times(\cos 2 a-\cos 0)=1 / 4 & \end{array}$

| | (f.t. candidate's value for k) | M1 |
| :--- | :---: | :---: | :---: |
| $\cos 2 a=1 / 2$ | | |
| $a=\pi / 6$ | (f.a.o.) | A1 |
| (f.t. $\cos 2 a=b$ provided both M's are awarded) | A1 | |

7. (a) $9|x-3|=6$ B1
$x-3= \pm 2 / 3$
(f.t. candidate's $a|x-3|=b$, with at least one of a, b correct) B1
$x={ }^{11} / 3,7 / 3$
(f.t. candidate's $a|x-3|=b$, with at least one of a, b correct) B1
(b) Trying to solve either $5 x-2 \leq 3$ or $5 x-2 \geq-3$
$5 x-2 \leq 3 \Rightarrow x \leq 1$
$5 x-2 \geq-3 \Rightarrow x \geq-1 / 5$ (both inequalities)

A1
Required range: - $1 / 5 \leq x \leq 1$
(f.t. one slip)

Alternative mark scheme

$(5 x-2)^{2} \leq 9 \quad$ (forming and trying to solve quadratic)
Critical points $x=-1 / 5$ and $x=1$
Required range: - $1 / 5 \leq x \leq 1$
(f.t. one slip)
8.

Concave down curve passing through the origin with maximum point in the second quadrant
x-coordinate of stationary point $=-0 \cdot 5$
y-coordinate of stationary point $=8$
9. (a)
(i) $\quad f^{\prime}(x)=\frac{\left(x^{2}+5\right) \times f(x)-\left(x^{2}+3\right) \times g(x)}{\left(x^{2}+5\right)^{2}} \quad(f(x), g(x) \neq 1)$
$f^{\prime}(x)=\frac{\left(x^{2}+5\right) \times 2 x-\left(x^{2}+3\right) \times 2 x}{\left(x^{2}+5\right)^{2}}$
A1
$f^{\prime}(x)=\frac{4 x}{\left(x^{2}+5\right)^{2}}$
$f^{\prime}(x)<0$ since numerator is negative and denominator is positive
(ii) $\quad R(f)=(3 / 5,1)$

B1 B1
(b)
(i) $\begin{array}{rlrl}x^{2} & =\frac{3-5 y}{y-1} \quad \text { (o.e.) } & \text { (condone any incorrect signs) } & \text { M1 } \\ x & =(\pm)(\underline{3-5 y})^{1 / 2} & \text { (f.t. at most one incorrect sign) } & \text { A1 } \\ x & =-\left(\frac{3-5 y}{y-1}\right)^{1 / 2} & \text { (f.t. at most one incorrect sign) } & \text { A1 } \\ f^{-1}(x)=-\left(\frac{3-5 x}{x-1}\right)^{1 / 2} & \text { (c.a.o.) } & \text { A1 }\end{array}$
(ii) $\quad R\left(f^{-1}\right)=(-\infty, 0), D\left(f^{-1}\right)=(3 / 5,1)$,
(both intervals, f.t. candidate's $R(f)$) B1
10. $\quad g g(x)=\left(3(g(x))^{2}+7\right)^{1 / 2}$ or $g g(x)=g\left(\left(3 x^{2}+7\right)^{1 / 2}\right)$

$$
g g(x)=\left(3\left(3 x^{2}+7\right)+7\right)^{1 / 2}
$$

A1
An attempt to solve the equation by squaring both sides
$g g(x)=8 \Rightarrow 9 x^{2}=36$
(o.e.)
(c.a.o.)
A1
$x= \pm 2$
(c.a.o.)
A1

C4

1.

$\begin{array}{ll}\text { (a) } & f(x) \equiv \frac{A}{(x+1)}+\frac{B}{(x-2)}+\frac{C}{(x-2)^{2}} \quad \text { (correct form) M1 } \\ 11+x-x^{2} \equiv A(x-2)^{2}+B(x+1)(x-2)+C(x+1) \\ \text { (correct clearing of fractions and genuine attempt to find coefficients) } \\ A=1, C=3, B=-2 \quad \mathrm{~m} 1 \\ \text { (third coefficient, f.t. one slip in enumeration of other } 2 \text { coefficients) }\end{array}$
A1
(b) $f^{\prime}(x)=-\frac{1}{(x+1)^{2}}+\frac{2}{(x-2)^{2}}-\frac{6}{(x-2)^{3}} \quad$ (o.e.)
(f.t. candidate's values for A, B, C) (at least one of the first two terms) B1
(third term) B1
$f^{\prime}(0)=1 / 4$
(c.a.o.) B1
2. $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}-8 x-3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=0$

$$
\begin{array}{ll}
\left(3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}-8 x\right) & \text { B1 } \\
\left(-3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y\right) & \text { B1 }
\end{array}
$$

$$
\text { Either } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 y+8 x}{3 v^{2}-3 x} \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{3}
$$

Equation of tangent: $y-(-3)=\frac{1}{3}(x-2)$
3 (f.t. candidate's value for $\frac{\mathrm{d} y}{\mathrm{~d} x}$) B1
3. (a) $4\left(1-2 \sin ^{2} \theta\right)=1-2 \sin \theta$. (correct use of $\cos 2 \theta=1-2 \sin ^{2} \theta$) M1 An attempt to collect terms, form and solve quadratic equation in $\sin \theta$, either by using the quadratic formula or by getting the expression into the form $(a \sin \theta+b)(c \sin \theta+d)$, with $a \times c=$ candidate's coefficient of $\sin ^{2} \theta$ and $b \times d=$ candidate's constant m1 $8 \sin ^{2} \theta-2 \sin \theta-3=0 \Rightarrow(4 \sin \theta-3)(2 \sin \theta+1)=0$ $\Rightarrow \sin \theta=\underline{3}, \quad \sin \theta=-\underline{1} 2$ (c.a.o.) A1
$\theta=48.59^{\circ}, 131.41^{\circ}$ B1 $\theta=210^{\circ}, 330^{\circ}$
Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range. $\sin \theta=+,-$, f.t. for 3 marks, $\sin \theta=-,-$, f.t. for 2 marks $\sin \theta=+,+$, f.t. for 1 mark
(b) \quad (i) $\quad R=17$ B1 Correctly expanding $\sin (x+\alpha)$ and using either $17 \cos \alpha=8$ or $17 \sin \alpha=15$ or $\tan \alpha=\frac{15}{8}$ to find α
(f.t. candidate's value for R) M1

$$
\alpha=61.93^{\circ}
$$

(c.a.o) A1
(ii)
$\sin (x+\alpha)=\frac{11}{17}$
(f.t. candidate's value for R) B1 $x+61.93^{\circ}=40.32^{\circ}, 139.68^{\circ}, 400 \cdot 32^{\circ}$, (at least one value on R.H.S., f.t. candidate's values for α and R) B1 $x=77.75^{\circ}, 338.39^{\circ}$
(c.a.o.) B1
(iii) Greatest possible value for k is 17 since greatest possible value for \sin is 1
(f.t. candidate's value for R) E 1
4.

$$
\begin{equation*}
\text { Volume }=\pi \int_{3}^{4}\left(\sqrt{ } x+\frac{5}{\sqrt{x}}\right)^{2} \mathrm{~d} x \tag{B1}
\end{equation*}
$$

$\left(\sqrt{ } x+\frac{5}{\sqrt{x}}\right)^{2}=(x+10+\underline{25})$
B1
$\int\left(a x+b+\frac{c}{x}\right) \mathrm{d} x=\frac{a x^{2}}{2}+b x+c \ln x$, where $c \neq 0$ and at least one of $a, b \neq 0$
Correct substitution of correct limits in candidate's integrated expression M1
of form $\frac{a x^{2}}{2}+b x+c \ln x$, where $c \neq 0$ and at least one of $a, b \neq 0$
Volume $=65(\cdot 0059 \ldots)$
(c.a.o.)
5. $\quad\left(1+\frac{x}{3}\right)^{-1 / 2}=1-\underline{x}+\frac{x^{2}}{24}$

$\left(1-\frac{x}{6}\right)$	B1
$\left(\frac{x^{2}}{24}\right)$	B1

$|x|<3$ or $-3<x<3$ B1
$\left(\frac{16}{15}\right)^{-1 / 2} \approx 1-\frac{1}{30}+\frac{1}{600}$
$\sqrt{ } 15 \approx \frac{581}{150}$
(c.a.o.)

B1
6. (a) candidate's x-derivative $=2 t$
candidate's y-derivative $=2 \quad$ (at least one term correct) and use of
$\underline{\mathrm{d} y}=\underline{\text { candidate's } y \text {-derivative }}$
M1
$\mathrm{d} x$ candidate's x-derivative
$\frac{\mathrm{d} y}{\mathrm{~d}}=\underline{1} \quad \quad$ (o.e.) (c.a.o.) A1
$\mathrm{d} x \quad t$
m1
Equation of normal at $P: \quad y-2 p=-p\left(x-p^{2}\right)$
(f.t. candidate's expression for $\underline{d y}$)
m1
$y+p x=p^{3}+2 p \quad$ (convincing) (c.a.o.) A1
(b) (i) Substituting $x=9, y=6$ in equation of normal M1
(ii) $p^{3}-7 p-6=0 \quad$ (convincing) A1
(ii) A correct method for solving $p^{3}-7 p-6=0 \quad$ M1
$p=-1 \quad$ A1
$p=-2 \quad$ A1
P is either $(1,-2)$ or $(4,-4) \quad$ (c.a.o.) A1
7.

$$
\begin{aligned}
& \text { (a) } u=x \Rightarrow \mathrm{~d} u=\mathrm{d} x \\
& \text { (o.e.) } \\
& \text { B1 } \\
& \mathrm{d} v=\mathrm{e}^{-2 x} \mathrm{~d} x \Rightarrow v=-\frac{1}{2} \mathrm{e}^{-2 x} \\
& \text { (o.e.) } \\
& \text { B1 } \\
& \begin{array}{lll}
\int x \mathrm{e}^{-2 x} \mathrm{~d} x=x \times-\frac{1}{2} \mathrm{e}^{-2 x}-\iint_{2}-\frac{1}{2} \mathrm{e}^{-2 x} \mathrm{~d} x & \text { M1 } \\
\int x \mathrm{e}^{-2 x} \mathrm{~d} x=-\frac{x}{2} \mathrm{e}^{-2 x}-\frac{1}{4} \mathrm{e}^{-2 x}+c & \text { (c.a.o.) } & \mathrm{A} 1
\end{array} \\
& \text { (b) } \int \frac{1}{x(1+3 \ln x)} \mathrm{d} x=\int \frac{k}{u} \mathrm{~d} u \\
& (k=1 / 3 \text { or } 3) \quad \text { M1 } \\
& \int \frac{a}{u} \mathrm{~d} u=a \ln u \\
& \text { B1 } \\
& \int_{1}^{\mathrm{e}} \frac{1}{x(1+3 \ln x)} \mathrm{d} x=k[\ln u]_{1}^{4} \text { or } k[\ln (1+3 \ln x)]_{1}^{\mathrm{e}} \\
& \text { B1 } \\
& \int_{1}^{e} \frac{1}{x(1+3 \ln x)} \mathrm{d} x=0.4621 \\
& \text { (c.a.o.) A1 }
\end{aligned}
$$

8.

(a) $\frac{\mathrm{d} V}{\mathrm{~d} t}=-k V^{3} \quad($ where $k>0)$ B1
(b) $\int \frac{\mathrm{d} V}{V^{3}}=-\int_{\mathrm{l}}^{\mathrm{d}} \mathrm{dt} \quad$ (o.e.) M1

$c=-\frac{1}{7200} \quad$ (c.a.o.) A 1
$V^{2}=\frac{3600}{7200 k t+1}=\frac{3600}{a t+1} \quad$ (convincing)
where $a=7200 k$$\quad$ A1
(c) Substituting $t=2$ and $V=50$ in expression for $V^{2} \quad$ M1 $a=0.22$
Substituting $V=27$ in expression for V^{2} with candidate's value for a
M1
$t=17 \cdot 9$
(c.a.o) A1
9. (a) An attempt to evaluate a.b

Correct evaluation of $\mathbf{a} . \mathbf{b}$ and $\mathbf{a} . \mathbf{b} \neq 0 \Rightarrow \mathbf{a}$ and \mathbf{b} not perpendicular A1
(b) (i) $\mathbf{A B}=2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$ B1
(ii) Use of $\mathbf{a}+\lambda \mathbf{A B}, \mathbf{a}+\lambda(\mathbf{b}-\mathbf{a}), \mathbf{b}+\lambda \mathbf{A B}$ or $\mathbf{b}+\lambda(\mathbf{b}-\mathbf{a})$ to find vector equation of $A B$

$$
\begin{equation*}
\mathbf{r}=4 \mathbf{i}+\mathbf{j}-6 \mathbf{k}+\lambda(2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}) \tag{o.e.}
\end{equation*}
$$

(f.t. if candidate uses his/her expression for $\mathbf{A B}$)
(c) $4+2 \lambda=2-2 \mu$
$1+\lambda=6+\mu$
$-6+2 \lambda=p+3 \mu \quad$ (o.e.)
(comparing coefficients, at least one equation correct) M1
(at least two equations correct) A1
Solving the first two of the equations simultaneously m 1
(f.t. for all 3 marks if candidate uses his/her expression for $\mathbf{A B}$)
$\lambda=2, \mu=-3 \quad$ (o.e.) (c.a.o.) A1
$p=7$ from third equation
(f.t. candidates derived values for λ and μ)
10. $a^{2}=5 b^{2} \Rightarrow(5 k)^{2}=5 b^{2} \Rightarrow b^{2}=5 k^{2} \quad$ B1
$\therefore 5$ is a factor of b^{2} and hence 5 is a factor of b
B1
$\therefore a$ and b have a common factor, which is a contradiction to the original assumption

FP1

\begin{tabular}{|c|c|c|c|}
\hline Ques \& Solution \& Mark \& Notes \\
\hline 1 \& \[
\begin{aligned}
S_{n} \& =\sum_{r=1}^{n} r^{3}-\sum_{r=1}^{n} r \\
\& =\frac{n^{2}(n+1)^{2}}{4}-\frac{n(n+1)}{2} \\
\& =\frac{n(n+1)}{4}\left(n^{2}+n-2\right) \\
\& =\frac{n(n-1)(n+1)(n+2)}{4}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1A1 \\
A1 \\
A1
\end{tabular} \& \\
\hline 2(a) \& \[
\begin{aligned}
\&(1+2 \mathrm{i})^{2}=1+4 \mathrm{i}+4 \mathrm{i}^{2} \\
\&=-3+4 \mathrm{i} \\
\& z=\frac{(-3+4 \mathrm{i})(2-\mathrm{i})}{(2+\mathrm{i})(2-\mathrm{i})} \\
\&=\frac{-6+8 \mathrm{i}+3 \mathrm{i}-4 \mathrm{i}^{2}}{5} \\
\&=\frac{-2+11 \mathrm{i}}{5}(-0.4+2.2 \mathrm{i}) \text { cao } \\
\& r=\sqrt{5}(2.24) \\
\& \tan ^{-1}(-5.5)=-1.39\left(-79.6^{\circ}\right) \text { or } \\
\& \tan ^{-1}(5.5)=1.39\left(79.6^{\circ}\right) \\
\& \theta=1.75\left(100.3^{\circ}\right)
\end{aligned}
\] \& \begin{tabular}{c}
M1 \\
A1 \\
M1 \\
A1A1 \\
A1 \\
\\
\hline \(\mathbf{B 1}\) \\
B1 \\
B1 \\
\hline
\end{tabular} \& \begin{tabular}{l}
Award for 3 reasonable terms. \\
A1 numerator, A1 denominator FT 1 arithmetic slip from line 2 \\
FT on line above for \(r\). FT on line above for this B1 \\
FT only if in \(2^{\text {nd }}\) or \(3^{\text {rd }}\) quad
\end{tabular} \\
\hline 3(a)

(b) \& \begin{tabular}{l}
$$
\begin{aligned}
\alpha+\beta & =-\frac{1}{2}, \alpha \beta=1 \\
\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha} & =\frac{\alpha^{3}+\beta^{3}}{\alpha \beta} \\
& =\frac{(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)}{\alpha \beta} \\
& =\frac{(-1 / 2)^{3}-3 \times 1 \times(-1 / 2)}{1} \\
& =\frac{11}{8}
\end{aligned}
$$

Consider
$$
\frac{\alpha^{2}}{\beta} \times \frac{\beta^{2}}{\alpha}=\alpha \beta=1
$$

The required equation is
$$
x^{2}-\frac{11}{8} x+1=0\left(8 x^{2}-11 x+8=0\right) \text { cao }
$$

 \&

B1

M1

M1A1

A1

M1A1

B1
\end{tabular} \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
4(a)(i) \\
(ii) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \text { Cofactor matrix }=\left[\begin{array}{ccc}
-13 \& 9 \& 1 \\
-18 \& 13 \& 1 \\
14 \& -10 \& -1
\end{array}\right] \\
\& \text { Adjugate matrix }=\left[\begin{array}{ccc}
-13 \& -18 \& 14 \\
9 \& 13 \& -10 \\
1 \& 1 \& -1
\end{array}\right] \\
\& \begin{aligned}
\text { Determinant } \& =3(7-20)+4(16-7)+2(5-4) \\
\& =-1 \\
\text { Inverse matrix } \& =\left[\begin{array}{ccc}
13 \& 18 \& -14 \\
-9 \& -13 \& 10 \\
-1 \& -1 \& 1
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } \& =\left[\begin{array}{ccc}
13 \& 18 \& -14 \\
-9 \& -13 \& 10 \\
-1 \& -1 \& 1
\end{array}\right]\left[\begin{array}{c}
1 \\
7 \\
10
\end{array}\right] \\
\& =\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right]
\end{aligned}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Award M1 if at least 5 cofactors are correct. \\
No FT on cofactor matrix. \\
FT the adjugate \\
FT their inverse matrix.
\end{tabular} \\
\hline 5(a)

(b) \& | By reduction to echelon form, $\left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & -1 & -5 \\ 0 & -2 & -10 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{c} 2 \\ -1 \\ k-6 \end{array}\right]$ |
| :--- |
| It follows now that $k-6=-2$ $k=4$ |
| Put $z=\alpha$. |
| Then $y=1-5 \alpha$ |
| And $x=7 \alpha$ | \& \[

$$
\begin{aligned}
& \hline \text { M1 } \\
& \\
& \text { A1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$
\] \&

\hline 6 \& | Putting $n=1$, the expression gives 3 which is divisible by 3 so the result is true for $n=1$ Assume that the formula is true for $n=k$. $\left(k^{3}+2 k\right.$ is divisible by 3 or $\left.k^{3}+2 k=3 N\right)$). |
| :--- |
| Consider (for $n=k+1$) $\begin{aligned} & (k+1)^{3}+2(k+1) \\ & =k^{3}+3 k^{2}+3 k+1+2 k+2 \\ & =3 N-2 k+3 k^{2}+3 k+1+2 k+2 \\ & =3\left(N+k^{2}+k+1\right) \end{aligned}$ |
| (This is divisible by 3), therefore true for $n=k \Rightarrow$ true for $n=k+1$ and since true for $n=1$, the result is proved by induction. | \& | B1 |
| :--- |
| M1 |
| M1 |
| A1 |
| A1 |
| A1 |
| A1 | \& | Award this M1 only if it is clearly stated that this is an assumption |
| :--- |
| Do not award the second M1 if this is stated as an assumption but the three A1s may be awarded if either of the M1s is awarded |

\hline
\end{tabular}

| 8(a) | Taking logs,
 $\ln f(x)=x \ln x$
 Differentiating,
 $\frac{f^{\prime}(x)}{f(x)}=\ln x+1$
 $f^{\prime}(x)=x^{x}(\ln x+1)$ | B1 | B1B1 |
| :---: | :---: | :---: | :---: |\quad B1 for LHS, B1 for RHS

FP2

Ques	Solution	Mark	Notes
Q	Putting $x=2,4 a-8=8-2 b$ The two derivatives are $2 a x$ and $3 x^{2}-b$ Putting $x=2,4 a=12-b$ Solving, $a=2, b=4 \text { cao }$	$\begin{gathered} \hline \text { M1A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	
2	$\begin{aligned} u=\mathrm{e}^{x} \Rightarrow \mathrm{~d} u & =\mathrm{e}^{x} \mathrm{~d} x, \\ {[0,1] } & \rightarrow \\ I & {[1, \mathrm{e}] } \\ I & =\int_{1}^{\mathrm{e}} \frac{\mathrm{~d} u / u}{u+4 / u} \\ & =\int_{1}^{\mathrm{e}} \frac{\mathrm{~d} u}{u^{2}+4} \\ & =\frac{1}{2}\left[\tan ^{-1}\left(\frac{u}{2}\right)\right]_{1}^{\mathrm{e}} \\ & =0.236 \end{aligned}$	B1 B1 M1 A1 A1 A1	
3	$\begin{gathered} \text { Put } t=\tan (x / 2) \\ \frac{3 \times 2 t}{1+t^{2}}=t \\ t\left(t^{2}-5\right)=0 \\ t=0 \text { giving } x / 2=n \pi \rightarrow x=2 n \pi\left(360 n^{\circ}\right) \\ t=\sqrt{5} \text { giving } x / 2=1.15026 . .+n \pi \\ \quad \rightarrow x=2.30+2 n \pi\left(360 n^{\circ}+132^{\circ}\right) \\ t=-\sqrt{5} \text { giving } x / 2=-1.15026 . .+n \pi \\ \rightarrow x=-2.30+2 n \pi\left(360 n^{\circ}-132^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	

\begin{tabular}{|c|c|c|c|}
\hline 4(a)

(b) \& | Let $\begin{aligned} \frac{3 x^{2}-4 x+1}{(x-2)\left(x^{2}+1\right)} & \equiv \frac{A}{x-2}+\frac{B x+C}{x^{2}+1} \\ & =\frac{A\left(x^{2}+1\right)+(B x+C)(x-2)}{(x-2)\left(x^{2}+1\right)} \end{aligned}$ |
| :--- |
| $x=2$ gives $A=1$ |
| Coeff of x^{2} gives $A+B=3, B=2$ |
| Const term gives $A-2 C=1, C=0$ $\begin{aligned} \int_{3}^{4} f(x) \mathrm{d} x & =\int_{3}^{4} \frac{1}{x-2} \mathrm{~d} x+\int_{3}^{4} \frac{2 x}{x^{2}+1} \mathrm{~d} x \\ & =[\ln (x-2)]_{3}^{4}+\left[\ln \left(x^{2}+1\right)\right]_{3}^{4} \\ & =\ln 2-\ln 1+\ln 17-\ln 10 \\ & =\ln \left(\frac{34}{10}\right) \text { or } \ln \left(\frac{17}{5}\right) \end{aligned}$ | \& M1

A1
A1
A1
M1
A1A1
A1
A1 \&

\hline | 5(a) |
| :--- |
| (b) | \& | $\text { Consider } \begin{aligned} f(-x) & =(-x)^{2} \sin (-x) \\ & =-x^{2} \sin x=-f(x) \end{aligned}$ |
| :--- |
| f is therefore odd. |
| $\sin x$ is odd and x^{n} is even if n is even and odd if |
| n is odd. si |
| So g is even if n is odd and g is odd when n is even. | \& \[

$$
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { M1 } \\
\\
\text { A1 } \\
\text { A1 }
\end{gathered}
$$

\] \& | Accept a specific value for x. |
| :--- |
| For a valid attempt. |
| Accept a specific value for x. |

\hline
\end{tabular}

7(a)(i) (ii) (iii) (b)(i) (ii)	Completing the square, $(y-1)^{2}=8 x-24$ The vertex is therefore $(3,1)$ In the usual notation, $a=2$ si The focus is $(5,1)$ The equation of the directrix is $x=1$ Substituting $y=m x$, $m^{2} x^{2}-2 m x-8 x+25=0$ For coincident roots, $\begin{aligned} & (2 m+8)^{2}=100 m^{2} \\ & 3 m^{2}-m-2=0 \end{aligned}$ Solving using a valid method, $m=1,-2 / 3$	M1 A1 A1 B1 B1 B1 M1 A1 M1 A1 A1 M1 A1	FT on 1 arithmetic slip
8(a) (b)(i) (ii)	The result is true for $n=1$ since it gives $(\cos \theta+\mathrm{i} \sin \theta)^{1}=\cos 1 \theta+\mathrm{i} \sin 1 \theta$ Let the result be true for $n=k$, ie $(\cos \theta+\mathrm{i} \sin \theta)^{k}=\cos k \theta+\mathrm{i} \sin k \theta$ Consider $\begin{aligned} & (\cos \theta+\mathrm{i} \sin \theta)^{k+1}=(\cos \theta+\mathrm{i} \sin \theta)^{k}(\cos \theta+\mathrm{i} \sin \theta) \\ & =(\cos k \theta+\mathrm{i} \sin k \theta)(\cos \theta+\mathrm{i} \sin \theta) \\ & \cos k \theta \cos \theta-\sin k \theta \sin \theta \\ & +\mathrm{i}(\sin k \theta \cos \theta+\cos k \theta \sin \theta) \\ & =\cos (k+1) \theta+\mathrm{i} \sin (k+1) \theta \end{aligned}$ True for $n=k \Rightarrow$ true for $n=k+1$ and since true for $n=1$ the result is proved by induction. Consider $\begin{aligned} & \left(w(\cos 2 \pi / 3+\mathrm{i} \sin 2 \pi / 3)^{3}\right. \\ & =w^{3}(\cos 2 \pi+\mathrm{i} \sin 2 \pi) \\ & =z \times 1=z \end{aligned}$ Showing that $(w(\cos 2 \pi / 3+\mathrm{i} \sin 2 \pi / 3))$ is a cube root of z. The real cube root of -8 is -2 . The other cube roots are $\begin{aligned} & -2(\cos 2 \pi / 3+i \sin 2 \pi / 3)=1-\sqrt{3} i \\ & -2(\cos 4 \pi / 3+i \sin 4 \pi / 3)=1+\sqrt{3 i} \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \hline \text { B1 } \\ \text { M1A1 } \\ \text { A1 } \end{gathered}$	

Ques	Solution	Mark	Notes
1	$\begin{aligned} \int_{0}^{1} x \sinh x \mathrm{~d} x=[x \cosh x]_{0}^{1}-\int_{0}^{1} & \cosh x \mathrm{~d} x \\ & =\cosh 1-[\sinh x]_{0}^{1} \\ & =\cosh 1-\sinh 1 \\ & =\frac{\mathrm{e}^{1}+\mathrm{e}^{-1}}{2}-\frac{\mathrm{e}^{1}-\mathrm{e}^{-1}}{2} \\ & =\frac{1}{\mathrm{e}} \end{aligned}$	M1A1 A1A1 A1 A1	Do not accept an argument which evaluates this as $0.367879 \ldots$ and shows that this is also the numerical value of 1/e.
2(a) (b)	The equation can be rewritten as $\sinh ^{2} x-\sinh x+1-k=0$ The condition for no real roots is $\begin{gathered} 1-4(1-k)=4 k-3<0 \\ k<\frac{3}{4} \\ \sinh ^{2} x-\sinh x-2=0 \\ (\sinh x-2)(\sinh x+1)=0 \\ \sinh x=2 \\ x=\sinh ^{-1} 2=\ln (2+\sqrt{5}) \end{gathered}$	M1A1 m1 A1 M1 A1 A1	
3	Let $f(x)=\tan ^{-1} x$ $\begin{gathered} p=f(1)=\frac{\pi}{4} \\ f^{\prime}(x)=\frac{1}{1+x^{2}} ; q=f^{\prime}(1)=\frac{1}{2} \\ f^{\prime \prime}(x)=-\frac{2 x}{\left(1+x^{2}\right)^{2}} ; r=\frac{f^{\prime \prime}(1)}{2}=-\frac{1}{4} \\ f^{\prime \prime \prime}(x)=\frac{-2\left(1+x^{2}\right)^{2}+2\left(1+x^{2}\right) \cdot 4 x^{2}}{\left(1+x^{2}\right)^{4}} ; s=\frac{f^{\prime \prime \prime}(1)}{6}=\frac{1}{12} \end{gathered}$	B1 M1A1 M1A1 M1A1	

5	Putting $t=\tan (x / 2)$ gives $\mathrm{d} x=\frac{2 \mathrm{~d} t}{1+t^{2}}$ $\begin{gathered} (0, \pi / 2) \rightarrow(0,1) \\ I=\int_{0}^{1} \frac{2 \mathrm{~d} t /\left(1+t^{2}\right)}{4\left(1-t^{2}\right) /\left(1+t^{2}\right)+3} \\ =2 \int_{0}^{1} \frac{\mathrm{~d} t}{7-t^{2}} \\ =2 \times \frac{1}{2 \sqrt{7}}\left[\ln \left(\left.\frac{\sqrt{7}+t}{\sqrt{7}-t} \right\rvert\,\right]_{0}^{1} \text { or } \frac{2}{\sqrt{7}}\left[\tanh ^{-1}\left(\frac{t}{\sqrt{7}}\right)\right]_{0}^{1}\right. \\ =\frac{1}{\sqrt{7}}\left(\ln \left(\frac{\sqrt{7}+1}{\sqrt{7}-1}\right)-\ln (1)\right) \\ \text { or } \frac{2}{\sqrt{7}}\left(\tanh ^{-1}\left(\frac{1}{\sqrt{7}}\right)-\tanh ^{-1}(0)\right) \\ =0.301 \end{gathered}$	B1 B1 M1 A1 A1 A1 A1	
6(a)	$\begin{aligned} I_{n} & =\left[\theta^{n} \sin \theta\right]_{0}^{\pi / 2}-n \int_{0}^{\pi / 2} \theta^{n-1} \sin \theta \mathrm{~d} \theta \\ & =\left(\frac{\pi}{2}\right)^{n}-n \int_{0}^{\pi / 2} \theta^{n-1} \sin \theta \mathrm{~d} \theta \\ & =\left(\frac{\pi}{2}\right)^{n}+\left[n \theta^{n-1} \cos \theta\right]_{0}^{\pi / 2}-n(n-1) I_{n-2} \\ & =\left(\frac{\pi}{2}\right)^{n}-n(n-1) I_{n-2} \end{aligned}$	M1A1 A1 M1A1	.
$(\mathbf{b})(\mathbf{i})$	$\begin{aligned} I_{0} & =\int_{0}^{\pi / 2} \cos \theta \mathrm{~d} \theta=[\sin \theta]_{0}^{\pi / 2}=1 \\ I_{4} & =\left(\frac{\pi}{2}\right)^{4}-12 I_{2} \\ & =\left(\frac{\pi}{2}\right)^{4}-12\left(\left(\frac{\pi}{2}\right)^{2}-2 I_{0}\right) \\ & =0.479 \end{aligned}$	B1 M1 A1 A1	
(b)(ii)	$\begin{aligned} \int_{0}^{\pi / 2} \theta^{5} \sin \theta \mathrm{~d} \theta & =-\left[\theta^{5} \cos \theta\right]_{0}^{\pi / 2}+5 \int_{0}^{\pi / 2} \theta^{4} \cos \theta \mathrm{~d} \theta \\ & =5 I_{4}=2.4 \end{aligned}$	M1A1 A1	FT their answer from (b)(i)

\begin{tabular}{|c|c|c|c|}
\hline 7(a)

(b) \& \begin{tabular}{l}
The Newton-Raphson iteration is
$$
\begin{aligned}
& \qquad \begin{array}{l}
x_{n+1}= \\
=x_{n}-\frac{\left(x_{n}-2 \tanh x_{n}\right)}{\left(1-2 \operatorname{sech}^{2} x_{n}\right)} \\
\\
=\frac{x_{n}-2 x_{n} \operatorname{sech}^{2} x_{n}-x_{n}+2 \tanh x_{n}}{1-2 \operatorname{sech}^{2} x_{n}} \\
\\
=\frac{-2 x_{n}+2 \sinh x_{n} \cosh x_{n}}{\cosh ^{2} x_{n}-2} \\
\\
=\frac{\sinh 2 x_{n}-2 x_{n}}{\cosh ^{2} x_{n}-2} \\
x_{0}=2
\end{array} \\
& x_{1}=1.916216399 \\
& x_{2}=1.915008327
\end{aligned}
$$

Rounding to three decimal places gives 1.915
$$
\text { Let } f(x)=x-2 \tanh x
$$
$$
f(1.9155)=4.1 \times 10^{-4}
$$
$$
f(1.9145)=-4.2 \times 10^{-4}
$$

The change of sign shows $\alpha=1.915$ correct 3dp

 \&

M1A1

A1

A1

A1

B1

B1

M1

A1
\end{tabular} \& The values are required

\hline 8(a)

(b) \& The curve cuts the x-axis where $x=\cosh ^{-1} 2=\alpha$

\[
$$
\begin{gathered}
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\sinh x \\
1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1+\sinh ^{2} x=\cosh ^{2} x \\
\text { Arc length }=\int \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x \\
=\int_{-\alpha}^{\alpha} \cosh x \mathrm{~d} x \\
=[\sinh x]_{-\alpha}^{\alpha} \\
=2 \sqrt{3} \quad(3.46) \text { cao } \\
\text { Curved surface area }=2 \pi \int^{=} y \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x \\
=4 \pi \int_{-\alpha}^{\alpha} \cosh x \mathrm{~d} x-\pi \int_{-\alpha}^{\alpha}(2-\cosh x) \cosh x \mathrm{~d} x \\
=\pi\left[4 \sinh x-\frac{1}{2} \sinh 2 x-x\right]_{-\alpha}^{\alpha} \\
\left.=2 \pi(4 \sqrt{3}-2 \sqrt{3}-\cosh)^{-1} 2\right)^{\alpha} \\
=13.5
\end{gathered}
$$

\] \& | B1 |
| :--- |
| B1 |
| B1 |
| M1 |
| A1 |
| A1 |
| A1 |
| M1 |
| A1 |
| A1 |
| A2 |
| A1 |
| A1 | \& | Seen or implied |
| :--- |
| Minus 1 each error |

\hline
\end{tabular}

WJEC
$\frac{\text { WJEC }}{\text { CBAC }}$
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

