

GCE MARKING SCHEME

MATHEMATICS - C1-C4 & FP1-FP3 AS/Advanced

SUMMER 2012

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2012 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

1.	(<i>a</i>)	Gradie	ent of $AB = \underline{in}$		—		M1
		Gradie	ent of AB = -	increase in $\frac{4}{3}$	x	(or equivalent)	A1
	<i>(b)</i>	A corr $C(-1,$	rect method for 3)	or finding	С		M1 A1
	(<i>c</i>)		$f m_{AB} \times m_L = -$				M1
		coordi	inates for C ar	nd candida	ate's gradient fo		M1
		1	ion of <i>L</i> : indidate's coo			(or equivalent) date's gradient for <i>AB</i>)	A 1
						(convincing, c.a.o.)	A1
	(d)	(i)	-	x = 7, y =	k in equation of	of L	M1
			k = 9				A1
		(ii)		ethod for	finding the leng		M1
			CA = 5		(f.t. candidate	's coordinates for C)	A1
			$DA = \sqrt{125}$				A1
		(iii)	$\sin ADC = \underline{0}$	$\frac{CA}{DA} = \frac{5}{\sqrt{125}}$			
			-			es for CA and DA)	M1
			$\sin ADC = 0$				A1
				$\overline{DA} \sqrt{5}$		()	

(a)

$$\frac{10}{7+2\sqrt{11}} = \frac{10(7-2\sqrt{11})}{(7+2\sqrt{11})(7-2\sqrt{11})}$$
M1

Denominator: 49 - 44 A1

$$\frac{10}{7+2\sqrt{11}} = \frac{10(7-2\sqrt{11})}{5} = 2(7-2\sqrt{11}) = 14 - 4\sqrt{11} \quad (c.a.o.) A1$$

Special case

If M1 not gained, allow B1 for correctly simplified denominator following multiplication of top and bottom by $7 + 2\sqrt{11}$

(b) $(4\sqrt{3})^2 = 48$ B1

$$\sqrt{8} \times \sqrt{50} = 20$$
 B1
 $5\sqrt{63} = 15$ B1

$$\frac{5\sqrt{65}}{\sqrt{7}} = 13$$
(4 $\sqrt{3}$)² - ($\sqrt{8} \times \sqrt{50}$) - $\frac{5\sqrt{63}}{\sqrt{7}} = 13$
(c.a.o.) B1

3. (a)
$$\frac{dy}{dx} = 4x - 11$$
 (an attempt to differentiate, at least
 $\frac{dx}{dx}$ one non-zero term correct) M1
An attempt to substitute $x = 2$ in candidate's expression for $\frac{dy}{dx}$ m1
Use of candidate's numerical value for $\frac{dy}{dx}$ as gradient of tangent at P
 $\frac{dx}{dx}$ m1
Equation of tangent at P: $y - (-1) = -3(x - 2)$ (or equivalent)
(c.a.o.) A1
(b) Gradient of tangent at $Q = 9$
An attempt to equate candidate's expression for $\frac{dy}{dx}$ and candidate's
 $\frac{derived}{dx}$ value for gradient of tangent at Q
 $4x - 11 = 9 \Rightarrow x = 5$
(f.t. one error in candidate's expression for $\frac{dy}{dy}$ A1

 $\frac{dx}{dx}$

4.
$$(1-2x)^6 = 1 - 12x + 60x^2 - 160x^3 + \dots$$
 B1 B1 B1 B1
(-1 for further incorrect simplification)

5. (a)
$$a = 3$$
 B1
 $b = -2$ B1

$$c = 17$$
 B1

(b)Stationary value = 17(f.t. candidate's value for
$$c$$
)B1This is a minimumB1

6.	<i>(a)</i>	An expression for $b^2 - 4ac$, with at least two of a , b , c correct $b^2 - 4ac = (2k-1)^2 - 4(k^2 - k + 2)$	M1 A1
		$b^2 - 4ac = -7$ (c.a.o.)	A1
		candidate's value for $b^2 - 4ac < 0$ (\Rightarrow no real roots)	A1
	(<i>b</i>)	Finding critical values $x = -6$, $x = \frac{2}{3}$	B1
		A statement (mathematical or otherwise) to the effect that	
		$x < -6 \text{ or }^{2}/_{3} < x$ (or equivalent)	
		(f.t critical values ± 6 , $\pm^2/_3$ only)	B2
		Deduct 1 mark for each of the following errors	

the use of \leq rather than < the use of the word 'and' instead of the word 'or'

7. (a)
$$y + \delta y = 3(x + \delta x)^2 - 7(x + \delta x) + 5$$

Subtracting y from above to find δy
 $\delta y = 6x\delta x + 3(\delta x)^2 - 7\delta x$
Dividing by δx and letting $\delta x \to 0$
 $\frac{dy}{dx} = \liminf_{\delta x \to 0} \frac{\delta y}{\delta x} = 6x - 7$
(c.a.o.) A1

(b) Required derivative =
$${}^{2}/_{3} \times {}^{1}/_{4} \times x^{-3/4} + 12 \times (-3) \times x^{-4}$$
 B1, B1

8.	<i>(a)</i>	Attempting to find $f(r) = 0$ for	some value of r	M1
		$f(2) = 0 \implies x - 2$ is a factor		A1
		$f(x) = (x-2)(6x^2 + ax + b)$ wi	th one of <i>a</i> , <i>b</i> correct	M1
		$f(x) = (x-2)(6x^2 - 7x - 3)$		A1
		f(x) = (x-2)(3x+1)(2x-3)	(f.t. only $6x^2 + 7x - 3$ in above line	e) A1
		$x = 2, -\frac{1}{3}, \frac{3}{2}$	(f.t. for factors $3x \pm 1$, $2x \pm 3$)	A1
		Special case		
		Candidates who after having	found $x - 2$ as one factor then find	one

Candidates who, after having found x - 2 as one factor, then find one of the remaining factors by using e.g. the factor theorem, are awarded B1 for final 4 marks

(b) Use of
$$g(a) = 11$$
 M1
 $a^3 - 53 = 11 \Rightarrow a = 4$ A1

(*a*)

Concave up curve and y-coordinate of minimum $= -7$	B1
x-coordinate of minimum $= 3$	B1
Both points of intersection with <i>x</i> -axis	B1

Concave up curve and <i>y</i> -coordinate of minimum $= -7$	B1
<i>x</i> -coordinate of minimum $=$ -4	B1
Both points of intersection with x-axis	B1

10. (a)
$$\frac{dy}{dx} = 3x^2 + 6x$$
 B1
Putting derived $\frac{dy}{dx} = 0$ M1
 $x = 0, -2$ (both correct) (f.t. candidate's $\frac{dy}{dx}$ A1
Stationary points are $(0, -1)$ and $(-2, 3)$ (both correct) (a, a, b) A1

Stationary points are (0, -1) and (-2, 3) (both correct) (c.a.o) A1 A correct method for finding nature of stationary points yielding **either** (0, -1) is a minimum point **or** (-2, 3) is a maximum point (f.t. candidate's derived values) M1 Correct conclusion for other point

(f.t. candidate's derived values) A1

(b)

Graph in shape of a positive cubic with two turning points	Ν
Correct marking of both stationary points	
(f.t. candidate's derived maximum and minimum points)	А

(<i>c</i>)	One positive root	(f.t. the number of times the candidate's	
		curve crosses the positive <i>x</i> -axis)	B1

Note: Answer only with no working earns 0 marks

 $10\cos^2\theta + 3\cos\theta = 4(1-\cos^2\theta) - 2$ *(a)* (correct use of $\sin^2 \theta = 1 - \cos^2 \theta$) M1 An attempt to collect terms, form and solve quadratic equation in $\cos \theta$, either by using the quadratic formula or by getting the expression into the form $(a \cos \theta + b)(c \cos \theta + d)$, with $a \times c$ = candidate's coefficient of $\cos^2 \theta$ and $b \times d$ = candidate's constant m1 $14\cos^2\theta + 3\cos\theta - 2 = 0 \Rightarrow (2\cos\theta + 1)(7\cos\theta - 2) = 0$ $\Rightarrow \cos \theta = \underline{2},$ $\cos \theta = -\underline{1}$ (c.a.o.)A1 2 7 $\theta = 73.40^{\circ}, 286.60^{\circ}$ B1 $\theta = 120^{\circ}, 240^{\circ}$ B1 B1 Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range. $\cos \theta = +, -, \text{ f.t. for 3 marks}, \cos \theta = -, -, \text{ f.t. for 2 marks}$ $\cos \theta = +, +, \text{ f.t. for 1 mark}$ $3x - 21^\circ = -54^\circ, 234^\circ, 306^\circ, 594$ *(b)* (one value) **B**1 $x = 85^{\circ}, 109^{\circ}$ B1 B1 Note: Subtract (from final two marks) 1 mark for each additional root in range, ignore roots outside range. c .:. (

c) Use of
$$\underline{\sin \phi} = \tan \phi$$
 M1
 $\cos \phi$
 $\tan \phi = 0.2$ A1
 $\phi = 11.31^{\circ}, 191.31^{\circ}$ (f.t $\tan \phi = a$) B1

3. (a)
$$11^2 = 5^2 + x^2 - 2 \times 5 \times x \times \frac{2}{5}$$
 (correct use of cos rule) M1
An attempt to collect terms, form and solve quadratic equation
in x, either by using the quadratic formula or by getting the
expression into the form $(x + b)(x + d)$, with $b \times d =$ candidate's
constant m1
 $x^2 - 4x - 96 = 0 \Rightarrow x = 12$ (c.a.o.) A1

(b)
$$\frac{\sin XZY}{32} = \frac{\sin 19^{\circ}}{15}$$

(substituting the correct values in the correct places in the sin rule) M1
 $XZY = 44^{\circ}$, 136° (at least one value) A1
Use of angle sum of a triangle = 180° M1
 $YXZ = 117^{\circ}$, 25° (both values)
(f.t. candidate's values for XZY provided both M's awarded) A1

4. (a)
$$S_n = a + [a + d] + ... + [a + (n - 1)d]$$

(at least 3 terms, one at each end) B1
 $S_n = [a + (n - 1)d] + [a + (n - 2)d] + ... + a$
Either:
 $2S_n = [a + a + (n - 1)d] + [a + a + (n - 1)d] + ... + [a + a + (n - 1)d]$
Or:
 $2S_n = [a + a + (n - 1)d]$ n times M1
 $2S_n = n[2a + (n - 1)d]$
 $S_n = n[2a + (n - 1)d]$ (convincing) A1

$$(b)$$
 $a + 2d + a + 3d + a + 9d = 79$ B1 $a + 5d + a + 6d = 61$ B1An attempt to solve the candidate's linear equations simultaneously by
eliminating one unknownM1 $a = 3, d = 5$ (both values)(c.a.o.)

(c)
$$a = 15, d = -2$$
 B1
 $S_n = \frac{n}{2} [2 \times 15 + (n-1)(-2)]$ (f.t. candidate's d) M1
 $S_n = n(16 - n)$ (c.a.o.) A1

5. (a)
$$a + ar = 72$$

 $a + ar^2 = 120$
An attempt to solve candidate's equations simultaneously by correctly
eliminating a
 $3r^2 - 5r - 2 = 0$
(convincing) A1

(b) An attempt to solve quadratic equation in r, either by using the quadratic formula or by getting the expression into the form
$$(ar + b)(cr + d), \text{ with } a \times c = 3 \text{ and } b \times d = -2 \qquad \text{M1}$$

$$(3r + 1)(r - 2) = 0 \Rightarrow r = -\frac{1}{3} \qquad \text{A1}$$

$$a \times (1 - \frac{1}{3}) = 72 \Rightarrow a = 108 \quad \text{(f.t. candidate's derived value for } r\text{) B1}$$

$$S_{\infty} = \frac{108}{1 - (-\frac{1}{3})} \qquad \text{(correct use of formula for } S_{\infty}, \text{ f.t. candidate's } \text{M1}$$

$$S_{\infty} = 81 \qquad (c.a.o.) \quad \text{A1}$$

6. (a)
$$3 \times \frac{x^{3/2}}{3/2} - 2 \times \frac{x^{-2/3}}{-2/3} + c$$
 (-1 if no constant term present) B1 B1
(b) (i) $36 - x^2 = 5x$ M1
An attempt to rewrite and solve quadratic equation
in x, either by using the quadratic formula or by getting the
expression into the form $(x + a)(x + b)$, with $a \times b = -36$ m1

$$(x-4)(x+9) = 0 \Rightarrow A(4, 20)$$
 (c.a.o.) A1
B(6, 0) B1

(ii) Area of triangle =
$$40$$
 (f.t. candidate's coordinates for A) B1

Area under curve =
$$\int_{4}^{6} (36 - x^2) dx$$
 (use of integration) M1

$$\int_{0}^{36} dx = 36x \text{ and } \int_{0}^{32} x^{2} dx = \frac{x^{3}}{3}$$
B1

Area under curve = [(216 - 216/3) - (144 - 64/3)]

(substitution of candidate's limits) m1 = 64/3

Use of candidate's, x_A , x_B as limits and trying to find total area by adding area of triangle and area under curve m1 Total area = 40 + 64/3 = 184/3 (c.a.o.) A1 *(a)* Let $p = \log_a x$ Then $x = a^p$ (relationship between log and power) B1 $x^n = a^{pn}$ (the laws of indices) B1 $\therefore \log_a x^n = pn$ (relationship between log and power) $\therefore \log_a x^n = pn = n \log_a x$ (convincing) B1 *(b)* **Either:** $(x/2 - 3) \log_{10} 9 = \log_{10} 6$ (taking logs on both sides and using the power law) M1 $x = \underline{2(\log_{10} 6 + 3\log_{10} 9)}$ A1 $\log_{10} 9$ x = 7.631(f.t. one slip, see below) A1 Or: $x/2 - 3 = \log_{9} 6$ (rewriting as a log equation) M1 $x = 2(\log_9 6 + 3)$ A1 x = 7.631(f.t. one slip, see below) A1 Note: an answer of x = -4.369 from $x = 2(\log_{10} 6 - 3\log_{10} 9)$ $\log_{10} 9$ earns M1 A0 A1 an answer of x = 3.815 from $x = \frac{\log_{10} 6 + 3 \log_{10} 9}{\log_{10} 8}$ $\log_{10}9$ earns M1 A0 A1 an answer of x = 1.908 from $x = (\log_{10} 6 + 3 \log_{10} 9)$ $2\log_{10} 9$ earns M1 A0 A1 an answer of x = 4.631 from $x = 2\log_{10} 6 + 3\log_{10} 9$ $\log_{10} 9$ earns M1 A0 A1

Note: Answer only with no working earns 0 marks

(<i>c</i>)	$\log_a (x-2) + \log_a (4x+1) = \log_a [(x-2) (4x+1)]$] (addition law)	B1
	$2\log_a(2x-3) = \log_a(2x-3)^2$	(power law)	B1
	$(x-2) (4x+1) = (2x-3)^2$	(removing logs)	M1
	$x = 2 \cdot 2$	(c.a.o.)	A1

Note: Answer only with no working earns 0 marks

8.	<i>(a)</i>	A(2, -3)	B1
		A correct method for finding the radius	M1
		Radius = $\sqrt{12}$	A1

(b)
$$AT^2 = 61$$
 (f.t. candidate's coordinates for A) B1
Use of $RT^2 = AT^2 - AR^2$ M1
 $RT = 7$ (f.t. candidate's radius and coordinates for A) A1

9. Area of sector $POQ = \frac{1}{2} \times r^2 \times 1 \cdot 12$ Area of triangle $POQ = \frac{1}{2} \times r^2 \times \sin(1 \cdot 12)$ $10 \cdot 35 = \frac{1}{2} \times r^2 \times 1 \cdot 12 - \frac{1}{2} \times r^2 \times \sin(1 \cdot 12)$ (f.t. candidate's expressions for area of sector and area of triangle) $r^2 = \frac{2 \times 10 \cdot 35}{(1 \cdot 12 - 0 \cdot 9)}$ $r = 9 \cdot 7$ (f.t. one numerical slip) A1

1. (a) 0 1

$$0.25$$
 1.064494459
 0.5 1.284025417
 0.75 1.755054657 (5 values correct) B2
1 2.718281828 (3 or 4 values correct) B1
Correct formula with $h = 0.25$ M1
 $I \approx 0.25 \times \{1 + 2.718281828 + 4(1.064494459 + 1.755054657) + 2(1.284025417)\}$
 $I \approx 17.56452913 \times 0.25 \div 3$
 $I \approx 1.463710761$
 $I \approx 1.4637$ (f.t. one slip) A1

Note: Answer only with no working shown earns 0 marks

(b)
$$\int_{0}^{1} e^{x^{2} + 3} dx = e^{3} \times \int_{0}^{1} e^{x^{2}} dx$$
 M1
$$\int_{0}^{1} e^{x^{2} + 3} dx = 29 \cdot 399$$
 (f.t. candidate's answer to (a)) A1

Note: Answer only with no working shown earns 0 marks

2. (a)
$$\phi = 360^\circ - \theta$$
 or $\phi = -\theta$ and noting that $\cos \theta = \cos \phi$ B1
 $\sin \theta \neq \sin \phi$ (including correct evaluations) B1

(b)
$$13 \tan^2 \theta = 5(1 + \tan^2 \theta) + 6 \tan \theta.$$

(correct use of $\sec^2 \theta = 1 + \tan^2 \theta$) M1
An attempt to collect terms, form and solve quadratic equation
in tan θ , either by using the quadratic formula or by getting the
expression into the form $(a \tan \theta + b)(c \tan \theta + d)$,
with $a \times c =$ candidate's coefficient of $\tan^2 \theta$ and
 $b \times d =$ candidate's constant
 $8 \tan^2 \theta - 6 \tan \theta - 5 = 0 \Rightarrow (4 \tan \theta - 5)(2 \tan \theta + 1) = 0$
 $\Rightarrow \tan \theta = \frac{5}{4}, \tan \theta = -\frac{1}{2}$
(c.a.o.) A1

$$\theta = 51 \cdot 34^{\circ}, 231 \cdot 34^{\circ}$$

 $\theta = 153 \cdot 43^{\circ}, 333 \cdot 43^{\circ}$
Note: Subtract 1 mark for each additional root in range for each

branch, ignore roots outside range. tan $\theta = +, -,$ f.t. for 3 marks, tan $\theta = -, -,$ f.t. for 2 marks tan $\theta = +, +,$ f.t. for 1 mark

3. (a)
$$\underline{d}(x^3) = 3x^2$$
 $\underline{d}(-3x-2) = -3$ B1

$$\frac{d(-4x^2y) = -4x^2 \frac{dy}{dx} - 8xy$$
B1

$$\frac{d}{d(2y^3)} = 6y^2 \frac{dy}{dx}$$
B1

$$x = 3, y = 1 \Rightarrow \frac{dy}{dx} = \frac{6}{42} = \frac{1}{7}$$
 (c.a.o.) B1

(b) (i) Differentiating sin *at* and cos *at* with respect to *t*, at least one
correct M1
candidate's *x*-derivative =
$$a \cos at$$
,
candidate's *y*-derivative = $-a \sin at$ (both values) A1
 $\frac{dy}{dt} = \frac{candidate's y}{dt} \frac{y}{dt} \frac{y}{dt} \frac{dy}{dt}$ (c.a.o.) A1
 $\frac{dy}{dt} \frac{dy}{dt} = -a \sec^2 at$ (f.t. candidate's expression for $\frac{dy}{dt}$) B1
 $\frac{d^2y}{dt} \frac{d^2y}{dt} \frac{d}{dt} \frac{dy}{dt}$ ÷ candidate's *x*-derivative M1
 $\frac{d^2y}{dx^2} = -\sec^3 at$ (c.a.o.) A1

$$\frac{2y}{x^2} = -\sec^3 at$$
 (c.a.o.) A

4. $f(x) = \cos x - 5x + 2$ An attempt to check values or signs of f(x) at x = 0, $x = \pi/4$ M1 $f(0) = 3 > 0, f(\pi/4) = -1 \cdot 22 < 0$ Change of sign $\Rightarrow f(x) = 0$ has root in $(0, \pi/4)$ A1 $x_0 = 0.6$ B1 $x_1 = 0.565067123$ $x_2 = 0.568910532$ $x_3 = 0.568497677$ (x_4 correct to 5 decimal places) B1 $x_4 = 0.568542145 = 0.56854$ An attempt to check values or signs of f(x) at x = 0.568535, x = 0.568545 M1 $f(0.568535) = 1.563 \times 10^{-5} > 0, f(0.568545) = -3.975 \times 10^{-5} < 0$ A1 Change of sign $\Rightarrow \alpha = 0.56854$ correct to five decimal places A1

Note: 'change of sign' must appear at least once

5. (a)
$$\frac{dy}{dx} = \frac{a+bx}{7+2x-3x^2}$$
 (including $a = 1, b = 0$) M1
$$\frac{dy}{dx} = \frac{2-6x}{7+2x-3x^2}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2-6x}{7+2x-3x^2}$$
A1

(b)
$$\underline{dy} = e^{\tan x} \times f(x)$$
 $(f(x) \neq 1, 0)$ M1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{\tan x} \times \mathrm{sec}^2 x \tag{A1}$$

(c)
$$\frac{dy}{dx} = 5x^2 \times f(x) + \sin^{-1}x \times g(x) \qquad (f(x), g(x) \neq 1, 0) \qquad M1$$

$$\frac{dy}{dx} = 5x^2 \times f(x) + \sin^{-1}x \times g(x)$$
(either $f(x) = 1$ or $g(x) = 10x$) A1

$$\frac{dy}{dx} = 5x^2 \times \frac{1}{\sqrt{1-x^2}} + 10x \times \sin^{-1}x$$
A1

6. (a) (i)
$$\int_{J} 3e^{2-x/4} dx = k \times 3e^{2-x/4} + c$$
 (k = 1, -¹/₄, 4, -4) M1
$$\int_{J} 3e^{2-x/4} dx = -4 \times 3e^{2-x/4} + c$$
 A1

(ii)
$$\int \frac{9}{(2x-3)^6} dx = \frac{k \times 9 \times (2x-3)^{-5}}{-5} + c \quad (k = 1, 2, \frac{1}{2}) \quad M1$$

$$\int \frac{9}{(2x-3)^6} dx = \frac{9 \times (2x-3)^{-5}}{-5 \times 2} + c$$
 A1

(iii)
$$\int \frac{7}{3x+1} dx = k \times 7 \times \ln |3x+1| + c$$
 $(k = 1, 3, \frac{1}{3})$ M1

$$\int \frac{7}{3x+1} dx = \frac{7}{3} \times \ln|3x+1| + c$$
 A1

Note: The omission of the constant of integration is only penalised once.

(b)
$$\int \sin 2x \, dx = k \times \cos 2x$$
 $(k = -1, -2, \frac{1}{2}, -\frac{1}{2})$ M1

$$\int_{0}^{3} \sin 2x \, dx = -\frac{1}{2} \times \cos 2x \qquad A1$$

$$k \times (\cos 2a - \cos 0) = \frac{1}{4}$$

(f.t. candidate's value for k) M1

$$\cos 2a = \frac{1}{2}$$
 (c.a.o.) A1
 $\sin a = \frac{1}{2}$ (c.a.d.) A1

$$a = \pi/6$$
 (f.t. cos 2a = b provided both M's are awarded) A1

7. (a)
$$9|x-3|=6$$

 $x-3=\pm^{2}/_{3}$ (f.t. candidate's $a|x-3|=b$,
with at least one of a, b correct) B1
 $x = \frac{11}{3}, \frac{7}{3}$ (f.t. candidate's $a|x-3|=b$,
with at least one of a, b correct) B1

(b) Trying to solve either
$$5x - 2 \le 3$$
 or $5x - 2 \ge -3$ M1
 $5x - 2 \le 3 \Rightarrow x \le 1$
 $5x - 2 \ge -3 \Rightarrow x \ge -\frac{1}{5}$ (both inequalities) A1
Required range: $-\frac{1}{5} \le x \le 1$ (f.t. one slip) A1

Alternative mark scheme $(5r - 2)^2 < 0$

$(5x-2)^2 \le 9$	(forming and try	ying to solve quadratic)	M1
Critical points $x = -$	$1/_{5}$ and $x = 1$		A1
Required range: $-\frac{1}{5}$	$\leq x \leq 1$	(f.t. one slip)	A1

Concave down curve passing through the origin with maximum point	nt in the
second quadrant	B1
x-coordinate of stationary point = -0.5	B1
<i>y</i> -coordinate of stationary point $= 8$	B1

9. (a) (i)
$$f'(x) = \frac{(x^2+5) \times f(x) - (x^2+3) \times g(x)}{(x^2+5)^2}$$
 ($f(x), g(x) \neq 1$) M1

$$f'(x) = \frac{(x^2+5) \times 2x - (x^2+3) \times 2x}{(x^2+5)^2}$$
 A1

$$f'(x) = \frac{4x}{(x^2 + 5)^2}$$
(c.a.o.) A1

B1

f'(x) < 0 since numerator is negative and denominator is positive

(ii)
$$R(f) = (^{3}/_{5}, 1)$$
 B1 B1

(b) (i)
$$x^2 = 3 - 5y$$
 (o.e.) (condone any incorrect signs) M1
 $x = (\pm) \left[\frac{3 - 5y}{y - 1} \right]^{1/2}$ (f.t. at most one incorrect sign) A1
 $x = - \left[\frac{3 - 5y}{y - 1} \right]^{1/2}$ (f.t. at most one incorrect sign) A1
 $f^{-1}(x) = - \left[\frac{3 - 5x}{x - 1} \right]^{1/2}$ (c.a.o.) A1

(ii)
$$R(f^{-1}) = (-\infty, 0), D(f^{-1}) = (^{3}/_{5}, 1),$$

(both intervals, f.t. candidate's $R(f)$) B1

10.	$gg(x) = (3(g(x))^{2} + 7)^{1/2} \text{ or } gg(x) = gg(x) = (3(3x^{2} + 7) + 7)^{1/2}$	$((3x^2+7)^{1/2})$		M1
	$gg(x) = (3(3x^2 + 7) + 7)^{1/2}$			A1
	An attempt to solve the equation by	squaring both sides		M1
	$gg(x) = 8 \Rightarrow 9x^2 = 36$	(o.e.)	(c.a.o.)	A1
	$x = \pm 2$		(c.a.o.)	A1

1. (a) $f(x) = \frac{A}{(x+1)} + \frac{B}{(x-2)} + \frac{C}{(x-2)^2}$ (correct form) M1 $11 + x - x^2 = A(x-2)^2 + B(x+1)(x-2) + C(x+1)$ (correct clearing of fractions and genuine attempt to find coefficients) A = 1, C = 3, B = -2 (2 correct coefficients) A1 (third coefficient, f.t. one slip in enumeration of other 2 coefficients) A1 (b) $f'(x) = -\frac{1}{(x+1)^2} + \frac{2}{(x-2)^2} - \frac{6}{(x-2)^3}$ (o.e.)

$$f'(0) = \frac{1}{4}$$

$$\frac{1}{(x+1)^2} + \frac{2}{(x-2)^2} = \frac{1}{(x-2)^3}$$
(c.e.)
(d.e.)
(c.e.)
(c.

2.
$$3y^{2} \frac{dy}{dx} - 8x - 3x \frac{dy}{dx} - 3y = 0$$

$$\begin{cases} 3y^{2} \frac{dy}{dx} - 8x \\ dx \end{cases}$$
B1
$$\begin{cases} 3y^{2} \frac{dy}{dx} - 8x \\ dx \end{cases}$$
B1

$$\begin{bmatrix} -3x \frac{dy}{dx} - 3y \end{bmatrix}$$
B1

Either $\underline{dy} = \underline{3y + 8x} \text{ or } \underline{dy} = \underline{1}$ (o.e.) (c.a.o.) B1

Equation of tangent: $y - (-3) = \frac{1}{3} \begin{pmatrix} x - 2 \\ 0 \\ x \end{pmatrix}$ [f.t. candidate's value for $\frac{dy}{dx}$] B1

3.	(<i>a</i>)	$4(1 - 2\sin^2\theta) = 1 - 2\sin\theta$. (correct use of $\cos 2\theta = 1 - 2\sin^2\theta$) M1 An attempt to collect terms, form and solve quadratic equation in $\sin\theta$, either by using the quadratic formula or by getting the expression into the form $(a\sin\theta + b)(c\sin\theta + d)$, with $a \times c =$ candidate's coefficient of $\sin^2\theta$				
		and b >	d = candidate's constant		m1	
			$\theta - 2\sin\theta - 3 = 0 \Rightarrow (4\sin\theta - 4\sin\theta)$	$(-3)(2\sin\theta + 1) = 0$ (c.a.o.)	A1	
		→ SIII	$\theta = \underline{3}, \sin \theta = -\underline{1}$	(0.a.0.)	AI	
			·59°, 131·41°		B1	
			0°, 330°		B1 B1	
		Note:	Subtract 1 mark for each add branch, ignore roots outside $\sin \theta = +, -, \text{ f.t. for 3 marks},$ $\sin \theta = +, +, \text{ f.t. for 1 mark}$	range.		
	<i>(b)</i>	(i)	<i>R</i> = 17		B1	
			Correctly expanding $\sin (x + \mathbf{or} \ 17 \sin \alpha = 15 \ \mathbf{or} \ \tan \alpha = 1$		= 8	
				(f.t. candidate's value for <i>R</i>) M1	
			$\alpha = 61.93^{\circ}$	(c.a.o)		
		(ii)	$\sin\left(x+\alpha\right) = \frac{11}{17}$	(f.t. candidate's value for R) B1	
			$x + 61.93^\circ = 40.32^\circ, 139.68$	°, 400·32°,		
			(at least one v	alue on R.H.S.,		
		(iii)	$x = 77.75^{\circ}, 338.39^{\circ}$ Greatest possible value for <i>k</i>	is 17 since greatest possible	o.) B1 value	
			for sin is 1	(f.t. candidate's value for <i>R</i>) EI	

4.

Volume = $\pi \int_{3}^{4} \left[\sqrt{x} + \frac{5}{\sqrt{x}} \right]^2 dx$ **B**1

$$\left[\sqrt{x} + \frac{5}{\sqrt{x}} \right]^2 = \left[x + 10 + \frac{25}{x} \right]$$
B1

$$|| ax + b + c| dx = ax^2 + bx + c \ln x, \text{ where } c \neq 0 \text{ and at least one of } a, b \neq 0$$

$$|| ax + b + c| dx = ax^2 + bx + c \ln x, \text{ where } c \neq 0 \text{ and at least one of } a, b \neq 0$$

$$B1$$

 $\int (x) = 2$ Correct substitution of correct limits in candidate's integrated expression M1 of form $\frac{ax^2}{2} + bx + c \ln x$, where $c \neq 0$ and at least one of $a, b \neq 0$ 2(c a 0) A1

Volume =
$$65(.0059...)$$
 (c.a.o.) A1

5.
$$\begin{pmatrix} 1+\underline{x}\\ 3 \end{pmatrix}^{-1/2} = 1 - \underline{x} + \underline{x}^{2} \\ 6 & 24 \end{pmatrix}$$

$$\begin{pmatrix} 1-\underline{x}\\ 6 \end{pmatrix}$$
 B1
$$\begin{pmatrix} \underline{x}^{2}\\ 24 \end{pmatrix}$$
 B1

$$|x| < 3 \text{ or } -3 < x < 3$$

$$\begin{bmatrix} 16\\15 \end{bmatrix}^{-1/2} \approx 1 - \frac{1}{30} + \frac{1}{600}$$

$$\sqrt{15} \approx \frac{581}{150}$$

(f.t. candidate's coefficients)
(c.a.o.) B1

6.	(<i>a</i>)	candidate's x-derivative = $2t$ candidate's y-derivative = 2 (at lease and use of	ast one term	n correct)	
		dy = candidate's y-derivative			M1
		$dx \text{candidate's } x \text{-derivative}$ $\frac{dy}{dx} = \frac{1}{t}$	(o.e.)	(c.a.o.)	A1
		Use of $\operatorname{grad}_{normal} \times \operatorname{grad}_{tangent} = -1$	2		m1
		Equation of normal at <i>P</i> : $y - 2p = -p(x)$	1 /		
		(f.t. candidate's exp	ression for	<u>dy</u>)	m1
				dx	
		$y + px = p^3 + 2p \tag{co}$	nvincing)	(c.a.o.)	A1
	<i>(b)</i>	(i) Substituting $x = 9$, $y = 6$ in equation	of normal		M1
		$p^3 - 7p - 6 = 0 \qquad (\text{conv})$	incing)		A1
		(ii) A correct method for solving $p^3 - 7$	p - 6 = 0		M1
		p = -1			A1
		p = -2			A1
		<i>P</i> is either $(1, -2)$ or $(4, -4)$		(c.a.o.)) A1

7. (a)
$$u = x \Rightarrow du = dx$$
 (o.e.) B1
 $du = e^{-2x} dx \Rightarrow u = -1e^{-2x}$ (o.e.) B1

$$dv = c \quad dx = v = -\frac{1}{2}c \quad (0.c.) \quad B1$$

$$\int x e^{-2x} dx = x \times -\frac{1}{2}e^{-2x} - \int -\frac{1}{2}e^{-2x} dx \quad M1$$

$$\int_{1}^{1} \frac{1}{2} = \frac{1}$$

(b)
$$\int \frac{1}{x(1+3\ln x)} dx = \int \frac{k}{u} du \qquad (k = \frac{1}{3} \text{ or } 3) \qquad M1$$
$$\int \frac{a}{u} du = a \ln u \qquad B1$$

$$\int_{1}^{e} \frac{1}{x(1+3\ln x)} dx = k \left[\ln u \right]_{1}^{4} \text{ or } k \left[\ln (1+3\ln x) \right]_{1}^{e}$$
B1

$$\int_{1}^{e} \frac{1}{x(1+3\ln x)} \, dx = 0.4621 \qquad (c.a.o.) \quad A1$$

8. (a)
$$\frac{\mathrm{d}V}{\mathrm{d}t} = -kV^3$$
 (where $k > 0$) B1

(b)
$$\int \frac{\mathrm{d}V}{V^3} = -\int k \,\mathrm{dt}$$
 (o.e.) M1

$$-\frac{V^{-2}}{2} = -kt + c \qquad A1$$

$$c = -\underline{1} \qquad (c.a.o.) \quad A1$$

$$V^{2} = \frac{3600}{7200kt+1} = \frac{3600}{at+1}$$
 (convincing)
where $a = 7200k$ A1

(c) Substituting t = 2 and V = 50 in expression for V^2 M1 a = 0.22 A1 Substituting V = 27 in expression for V^2 with candidate's value for at = 17.9 (c.a.o) A1

9.	<i>(a)</i>	An attempt to evaluate a.b	M1
		Correct evaluation of a.b and a.b \neq 0 \Rightarrow a and b not perpendicular	A1

(b) (i)
$$AB = 2i + j + 2k$$
 B1
(ii) Use of $a + \lambda AB$, $a + \lambda(b - a)$, $b + \lambda AB$ or $b + \lambda(b - a)$ to find
vector equation of AB M1
 $r = 4i + j - 6k + \lambda (2i + j + 2k)$ (o.e.)
(f.t. if candidate uses his/her expression for AB) A1

(c)
$$4 + 2\lambda = 2 - 2\mu$$

 $1 + \lambda = 6 + \mu$
 $-6 + 2\lambda = p + 3\mu$ (o.e.)
(comparing coefficients, at least one equation correct) M1
(at least two equations correct) A1
Solving the first two of the equations simultaneously m1
(f.t. for all 3 marks if candidate uses his/her expression for **AB**)
 $\lambda = 2, \mu = -3$ (o.e.) (c.a.o.) A1
 $p = 7$ from third equation
(f.t. candidates derived values for λ and μ) A1

10.
$$a^2 = 5b^2 \Rightarrow (5k)^2 = 5b^2 \Rightarrow b^2 = 5k^2$$
B1 \therefore 5 is a factor of b^2 and hence 5 is a factor of bB1 \therefore a and b have a common factor, which is a contradiction to the original assumptionB1

Ques	Solution	Mark	Notes
1	$\sum_{n=1}^{n} r^3 - \sum_{n=1}^{n} r^3$	M1	
	$S_n = \sum_{r=1}^n r^3 - \sum_{r=1}^n r$		
	$=\frac{n^2(n+1)^2}{4}-\frac{n(n+1)}{2}$	A1A1	
	+ <i>2</i>		
	$=\frac{n(n+1)}{4}\left(n^2+n-2\right)$	A1	
	•		
	$=\frac{n(n-1)(n+1)(n+2)}{4}$	A1	
2 (a)	$= \frac{n(n-1)(n+1)(n+2)}{4}$ (1+2i) ² = 1+4i+4i ²	M1	Award for 3 reasonable terms.
	= -3 + 4i	A1	
	$z = \frac{(-3+4i)(2-i)}{(2+i)(2-i)}$	M1	
	$=\frac{-6+8i+3i-4i^2}{5}$	A1A1	A1 numerator, A1 denominator
	5		FT 1 arithmetic slip from line 2
	$=\frac{-2+11i}{5}(-0.4+2.2i)$ cao	A1	
(b)	5		
	$r = \sqrt{5}$ (2.24)	B 1	FT on line above for <i>r</i> .
	$\tan^{-1}(-5.5) = -1.39 \ (-79.6^{\circ}) \text{ or}$	B1	FT on line above for this B1
	$\tan^{-1}(5.5) = 1.39 (79.6^{\circ})$		
	$\theta = 1.75 \ (100.3^{\circ})$	B 1	FT only if in 2 nd or 3 rd quad
3 (a)	$\alpha + \beta = -\frac{1}{2}, \alpha\beta = 1$	B1	
	2	DI	
	$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta}$	M1	
	, ,		
	$=\frac{(\alpha+\beta)^3-3\alpha\beta(\alpha+\beta)}{\alpha\beta}$	M1A1	
	$=\frac{(-1/2)^3 - 3 \times 1 \times (-1/2)}{1}$	A1	
	$=\frac{11}{8}$		
(b)	$=\frac{1}{8}$		
(0)	Consider		
	$\frac{\alpha^2}{\beta} \times \frac{\beta^2}{\alpha} = \alpha\beta = 1$	M1A1	
	The required equation is	D1	
	$x^{2} - \frac{11}{8}x + 1 = 0$ (8 $x^{2} - 11x + 8 = 0$) cao	B1	
	-		

4 (a)(i)			
.()(1)	Cofactor matrix = $\begin{vmatrix} 15 & 5 & 1 \\ -18 & 13 & 1 \\ 14 & -10 & -1 \end{vmatrix}$	M1 A1	Award M1 if at least 5 cofactors are correct.
(ii)	Adjugate matrix = $\begin{bmatrix} -13 & -18 & 14 \\ 9 & 13 & -10 \\ 1 & 1 & -1 \end{bmatrix}$ Determinant = 3(7 - 20) +4(16 - 7) +2(5 - 4)	A1 M1	No FT on cofactor matrix.
	$= -1$ Inverse matrix = $\begin{bmatrix} 13 & 18 & -14 \\ -9 & -13 & 10 \\ -1 & -1 & 1 \end{bmatrix}$	A1 A1	FT the adjugate
(b)	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 13 & 18 & -14 \\ -9 & -13 & 10 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 7 \\ 10 \end{bmatrix}$	M1	
	$= \begin{bmatrix} -1\\0\\2 \end{bmatrix}$	A1	FT their inverse matrix.
5(a)	By reduction to echelon form, $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$	M1	
(b)	$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -5 \\ 0 & -2 & -10 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ k-6 \end{bmatrix}$ It follows now that $k - 6 = -2$ k = 4 Put $z = \alpha$. Then $y = 1 - 5\alpha$ And $x = 7\alpha$	A1 A1 M1 A1 M1 A1 A1 A1	
6	Putting $n = 1$, the expression gives 3 which is divisible by 3 so the result is true for $n = 1$ Assume that the formula is true for $n = k$. $(k^3 + 2k$ is divisible by 3 or $k^3 + 2k = 3N$)). Consider (for $n = k + 1$)	B1 M1	Award this M1 only if it is clearly stated that this is an assumption
	$(k+1)^{3} + 2(k+1)$ $= k^{3} + 3k^{2} + 3k + 1 + 2k + 2$ $= 3N - 2k + 3k^{2} + 3k + 1 + 2k + 2$ $= 3(N+k^{2}+k+1)$ (This is divisible by 3), therefore true for $n = k \Rightarrow$ true for $n = k + 1$ and since true for $n = 1$, the result is proved by induction.	M1 A1 A1 A1 A1	Do not award the second M1 if this is stated as an assumption but the three A1s may be awarded if either of the M1s is awarded
	pro. •• • • • • • • • • • • • • • • • • •	AI	

7(a)	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$		
7(a)	Ref matrix in $y = x = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	Translation matrix = $\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	Ref matrix in x-axis = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	
	$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} =$	M1	
	$\begin{bmatrix} 1 & 0 & -2 \\ 0 & -1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix}$	A1	
	$= \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix}$		
(b)	$\begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$	M1	
	y-2 = x, -x-2 = y x = -2, y = 0 cao	A1 A1A1	

8 (a)	Taking logs,		
	$\ln f(x) = x \ln x$	B1	
	Differentiating, $f'(x) = 1$	B1B1	B1 for LHS, B1 for RHS
	$\frac{f'(x)}{f(x)} = \ln x + 1$		
	$f'(x) = x^x(\ln x + 1)$	B1	
(b)	At a stationary point, $f'(x) = 0$	M1	
	$\ln x = -1$	A1	
	$x = \frac{1}{e}; y = \left(\frac{1}{e}\right)^{1/e}$ (0.368, 0.692)	A1	
(c)	Differentiating the expression in (a),		
(0)	$f''(x) = x^{x}(\ln x + 1)(\ln x + 1) + x^{x} \times \frac{1}{x}$	B1B1	B1 each term
	$= x^{x-1} + x^{x}(1+\ln x)^{2}$		
	f''(1/e) = 1.88	B1	Accept 'Since the first term is
	Since this is positive it is a minimum.	B1	positive and the second term zero, it is a minimum'
			FT the final B1 on the line above
9(a)	1	M1	
9(a)	$x + iy = \frac{1}{u + iv}$	IVII	
	$=\frac{u-iv}{u^2+v^2}$	A1	
	$x = \frac{u}{u^2 + v^2}$		
	$y = -\frac{v}{u^2 + v^2}$	A1	
	$u^2 + v^2$ We are given that		
(b)(i)	$-\frac{v}{u^2 + v^2} = \frac{mu}{u^2 + v^2} + 1$	M1	
	$u^{2} + v^{2} - u^{2} + v^{2} + v^{2}$ $-v = mu + u^{2} + v^{2}$	A 1	
	$-v = mu + u^{2} + v^{2}$ $u^{2} + v^{2} + mu + v = 0$	A1 A1	
(**)	(This is the equation of a circle).	N/1	
(ii)	Completing the square or quoting the standard results,	M1	FT on their circle equation
	Radius = $\frac{1}{2}\sqrt{m^2+1}$	A1	
	Centre $\left(-\frac{1}{2}m,-\frac{1}{2}\right)$	A1	
(iii)	$v = -\frac{1}{2}$	A1	Accept $y = -\frac{1}{2}$
			2

Ques	Solution	Mark	Notes
1	Putting $x = 2, 4a - 8 = 8 - 2b$	M1A1	
	The two derivatives are $2ax$ and $3x^2 - b$	M1	
	Putting $x = 2, 4a = 12 - b$	A1	
	Solving,		
	a=2, b=4 cao	A1	
2	$u = e^x \Longrightarrow du = e^x dx$,	B1	
_	$[0,1] \rightarrow [1,e]$	B1	
	$I = \int_{1}^{e} \frac{\mathrm{d}u/u}{u+4/u}$	M1	
	$\int_{1}^{1} u + 4/u$		
	$\overset{\mathrm{e}}{\mathbf{f}}$ du		
	$=\int_{1}^{e}\frac{\mathrm{d}u}{u^{2}+4}$	A1	
	1		
	$=\frac{1}{2}\left[\tan^{-1}\left(\frac{u}{2}\right)\right]_{1}^{e}$	A1	
	$2 \begin{bmatrix} 2 & 2 \end{bmatrix}_1$		
	= 0.236	A1	
3			
	Put $t = \tan(x/2)$		
	$3 \times 2t$		
	$\frac{3 \times 2t}{1+t^2} = t$	M1	
	$t(t^2-5)=0$	A1	
	$t = 0 \text{ giving } x/2 = n\pi \rightarrow x = 2n\pi (360n^{\circ})$	M141	
		M1A1 M1	
	$t = \sqrt{5}$ giving $x/2 = 1.15026+ n\pi$	A1	
	$\rightarrow x = 2.30 + 2n\pi (360n^{\circ} + 132^{\circ})$	M1	
	$t = -\sqrt{5}$ giving $x/2 = -1.15026+ n\pi$	IVII	
	$\rightarrow x = -2.30 + 2n\pi (360n^{\circ} - 132^{\circ})$	A1	

4(a) Let			
	A = Bx + C		
$\frac{3x^2 - 4x + 1}{(x - 2)(x^2 + 1)} \equiv$	$\frac{1}{x-2} + \frac{1}{x^2+1}$		
	$A(x^{2}+1) + (Bx+C)(x-2)$	M1	
=	$\frac{A(x^2+1) + (Bx+C)(x-2)}{(x-2)(x^2+1)}$	1911	
x = 2 gives $A = 1$		A1	
Coeff of x^2 gives $A +$	B = 3, B = 2	A1	
Const term gives $A -$		A1	
(b) $\int_{-3}^{4} f(x) dx = \int_{-3}^{4} \frac{1}{x-2} dx$	$+\int_{-\infty}^{4} \frac{2x}{x^2+1} dx$	M1	
5 5	$\int_{3}^{4} + \left[\ln(x^{2} + 1) \right]_{8}^{4}$		
	$f_{\rm B} + [\ln(x + 1)]_{\rm B}$ + $\ln 17 - \ln 10$	A1A1 A1	
		AI	
$= \ln\left(\frac{34}{10}\right) c$	$r \ln\left(\frac{17}{5}\right)$	A1	
5(a) Consider (() ($a^2 a i a (a a)$	M1	Accept a specific value for <i>x</i> .
5(a) Consider $f(-x) = (-x)$		A1	Accept a specific value for x.
	$x^2 \sin x = -f(x)$	A1	
f is therefore odd.	even if <i>n</i> is even and odd if		
(U)	even n <i>n</i> is even and odd n	M1	For a valid attempt.
n is odd. si So g is even if n is or	b	A1	Accept a specific value for <i>x</i> .
and g is odd when n is		A1	

6(a)	Putting $x = 0$ gives $(0, -20/3)$ Putting $y = 0$,	B1 M1	
	$\frac{2}{x-3} = 6 - x$	A1	
	$\begin{array}{c} x - 3 \\ (x - 3)(6 - x) = 2 \end{array}$	AI	
	$x^2 - 9x + 20 = 0$	A1	
	giving (4,0); (5,0) cao	A1	
(b)	Differentiating,	M1	
	$-\frac{2}{(x-3)^2} + 1 = 0$	A1	
	$(x-3)^2 = 2$	A1	
	$x = 3 + \sqrt{2}(4.41), y = 2\sqrt{2} - 3(-0.172)$	A1	Award A1A0 for the 2 <i>x</i> values
	$x = 3 - \sqrt{2}(1.59), y = -3 - 2\sqrt{2}(-5.83)$ The asymptotes are	A1	only.
(c)	<i>x</i> = 3	B1	
	y = x - 6	B1	
	У		
(d)		G1	General shape of both branches.
		G1	Correct shape including asymptotic behaviour.

7(a)(i)	Completing the square,	M1	
	$(y-1)^2 = 8x - 24$	A1	
	The vertex is therefore $(3,1)$	A1	FT on 1 arithmetic slip
(ii)	In the usual notation, $a = 2$ si	B1	
	The focus is (5,1)	B1	
(iii)	The equation of the directrix is $x = 1$	B 1	
(b)(i)			
	Substituting $y = mx$,	M1	
(ii)	$m^2 x^2 - 2mx - 8x + 25 = 0$	A1 M1	
	For coincident roots, $(2m+8)^2 = 100m^2$	A1	
		A1	
	$3m^2 - m - 2 = 0$		
	Solving using a valid method, m = 1, -2/3	M1	
	m = 1, -2/3	A1	
8 (a)	The result is true for $n = 1$ since it gives		
	$(\cos\theta + i\sin\theta)^{1} = \cos 1\theta + i\sin 1\theta$	B1	
	Let the result be true for $n = k$, ie		
	$(\cos\theta + i\sin\theta)^k = \cos k\theta + i\sin k\theta$	M1	
	Consider		
	$(\cos\theta + i\sin\theta)^{k+1} = (\cos\theta + i\sin\theta)^k (\cos\theta + i\sin\theta)$	M1	
	$= (\cos k\theta + i\sin k\theta)(\cos \theta + i\sin \theta)$	A1	
	$\cos k\theta \cos \theta - \sin k\theta \sin \theta$		
	+ $i(\sin k\theta \cos \theta + \cos k\theta \sin \theta)$	A1	
	$= \cos(k+1)\theta + i\sin(k+1)\theta$	A1	
	True for $n = k \Rightarrow$ true for $n = k + 1$ and since true		
	for $n = 1$ the result is proved by induction.	A1	
	for $n = 1$ the result is proved by induction.		
(b)(i)	Consider		
(0)(1)	$(w(\cos 2\pi/3 + i \sin 2\pi/3)^3)$	M1	
	$= w^3(\cos 2\pi + i\sin 2\pi)$	A1	
	$= z \times 1 = z$	A1	
	Showing that $(w(\cos 2\pi/3 + i \sin 2\pi/3))$ is a cube		
	root of z .		
	1000 01 2.		
(ii)	The real cube root of -8 is -2 .	B1	
	The other cube roots are		
	$-2(\cos 2\pi/3 + i\sin 2\pi/3) = 1 - \sqrt{3}i$	M1A1	
	$-2(\cos 4\pi/3 + i\sin 4\pi/3) = 1 + \sqrt{3}i$	A1	

FP3	,

Ques	Solution	Mark	Notes
1			
	$\int x \sinh x dx = [x \cosh x] - \int \cosh x dx$	M1A1	
	$ \begin{array}{c} 0 \\ = \cosh 1 \\ - \left[\sinh x \right]_{0}^{1} \end{array} $	A 1 A 1	
	$-\cos(1) - \left[\sin(x)\right]_0$	A1A1	
	$= \cosh 1 - \sinh 1$	A1	Do not accept an argument which evaluates this as
			0.367879 and shows that this
	$e^{1} + e^{-1}$ $e^{1} - e^{-1}$		is also the numerical value of
	$=\frac{e^{1}+e^{-1}}{2}-\frac{e^{1}-e^{-1}}{2}$	A1	1/e.
	$=\frac{1}{2}$		
	e		
2(a)	The equation can be rewritten as		
	$\sinh^2 x - \sinh x + 1 - k = 0$	M1A1	
	The condition for no real roots is 1-4(1-k) = 4k-3 < 0	ml	
	$k < \frac{3}{4}$	A1	
(b)	$\sinh^2 x - \sinh x - 2 = 0$		
	$(\sinh x - 2)(\sinh x + 1) = 0$	M1	
	$\sinh x = 2$	A1	
	$x = \sinh^{-1} 2 = \ln(2 + \sqrt{5})$	A1	
3	Let $f(x) = \tan^{-1} x$		
	$n = f(1) = \frac{\pi}{2}$	B1	
	$p = f(1) = \frac{\pi}{4}$		
	$f'(x) = \frac{1}{1+x^2}; q = f'(1) = \frac{1}{2}$	M1A1	
	$1+x^{2}$, $1+x^{2}$, 2		
	2 - f''(1) = 1		
	$f''(x) = -\frac{2x}{(1+x^2)^2}; r = \frac{f''(1)}{2} = -\frac{1}{4}$	M1A1	
	$f'''(x) = \frac{-2(1+x^2)^2 + 2(1+x^2) \cdot 4x^2}{(1+x^2)^4}; s = \frac{f'''(1)}{6} = \frac{1}{12}$	M1A1	
	(1+x) 0 12		

4 (a)	Consider		
4 (a)			
	$y = r\sin\theta$	M1	
	$= 2\sin\theta\cos\theta - \sin^2\theta$		
	$\frac{\mathrm{d}y}{\mathrm{d}\theta} = 2\cos^2\theta - 2\sin^2\theta - 2\sin\theta\cos\theta$	A1	
	$d\theta$	711	
	$= 2\cos 2\theta - \sin 2\theta$	A1	
		711	
	The tangent is parallel to the initial line where	M1	
	$2\cos 2\theta = \sin 2\theta$		
	$\tan 2\theta = 2$	A1	
	$\theta = 0.554, r = 1.18$	A1	Accept 31.7°
			-
(b)	The curves intersect where	M1	
	$2\cos\theta - \sin\theta = 1 + \sin\theta$	IVIII	
	$2\cos\theta - 2\sin\theta = 1$	A 1	
	EITHER	A1	
	Putting $t = \tan(\theta/2)$	N /[1	
		M1	
	$\frac{2(1-t^2)}{1+t^2} - \frac{4t}{1+t^2} = 1$	A 1	
		A1	
	$3t^2 + 4t - 1 = 0$	A1	
	$\tan(\theta/2) = \frac{-4 + \sqrt{28}}{6} (0.21525)$	A 1	
	$\tan(\theta/2) = \frac{1}{6}$ (0.21525)	A1	
	$\theta = 0.424, r = 1.41$	A 1	
	OR	A1	Accept 24.3°
	Putting $2 \cos \theta = 2 \sin \theta = x \cos(\theta + x)$	1.1	
	$2\cos\theta - 2\sin\theta = r\cos(\theta + \alpha)$	M1	
	$lpha=\pi/4$	A1	
	$r = 2\sqrt{2}$	A1	
	$\cos(\theta + \pi/4) = \frac{1}{2}$	A 1	
	$\cos(\theta + \pi/4) = \frac{1}{2\sqrt{2}}$	A1	
	$\theta = 0.424, r = 1.41$	A1	Accept 24.3°

5			
	Putting $t = \tan(x/2)$ gives $dx = \frac{2dt}{1+t^2}$	B1	
	$(0,\pi/2) \rightarrow (0,1)$	B1	
	$I = \int_{0}^{1} \frac{2dt/(1+t^{2})}{4(1-t^{2})/(1+t^{2})+3}$	M1	
	$=2\int_{0}^{1}\frac{\mathrm{d}t}{7-t^{2}}$	A1	
	$= 2 \times \frac{1}{2\sqrt{7}} \left[\ln \left \frac{\sqrt{7} + t}{\sqrt{7} - t} \right \right]_0^1 \text{ or } \frac{2}{\sqrt{7}} \left[\tanh^{-1} \left(\frac{t}{\sqrt{7}} \right) \right]_0^1$	A1	
	$=\frac{1}{\sqrt{7}}\left(\ln\left(\frac{\sqrt{7}+1}{\sqrt{7}-1}\right)-\ln(1)\right)$	A1	
	or $\frac{2}{\sqrt{7}}\left(\tanh^{-1}\left(\frac{1}{\sqrt{7}}\right) - \tanh^{-1}(0)\right)$ = 0.301	A1	
6(a)	$I_n = \left[\theta^n \sin \theta\right]_0^{\pi/2} - n \int_0^{\pi/2} \theta^{n-1} \sin \theta \mathrm{d}\theta$	M1A1	
	$= \left(\frac{\pi}{2}\right)^n - n \int_0^{\pi/2} \theta^{n-1} \sin \theta \mathrm{d}\theta$	A1	
	$= \left(\frac{\pi}{2}\right)^{n} + \left[n\theta^{n-1}\cos\theta\right]_{0}^{\pi/2} - n(n-1)I_{n-2}$	M1A1	
	$= \left(\frac{\pi}{2}\right)^n - n(n-1)I_{n-2}$		
(b)(i)	$I_0 = \int_0^{\pi/2} \cos\theta \mathrm{d}\theta = [\sin\theta]_0^{\pi/2} = 1$	B1	
	$I_4 = \left(\frac{\pi}{2}\right)^4 - 12I_2$	M1	
	$= \left(\frac{\pi}{2}\right)^4 - 12\left(\left(\frac{\pi}{2}\right)^2 - 2I_0\right)$	A1	
	= 0.479	A1	
(b)(ii)	$\int_{0}^{\pi/2} \theta^{5} \sin \theta \mathrm{d}\theta = -\left[\theta^{5} \cos \theta\right]_{0}^{\pi/2} + 5 \int_{0}^{\pi/2} \theta^{4} \cos \theta \mathrm{d}\theta$	M1A1	
	$= 5I_4 = 2.4$	A1	FT their answer from (b)(i)

7 (a)	The Newton-Raphson iteration is		
	$x_{n+1} = x_n - \frac{(x_n - 2 \tanh x_n)}{(1 - 2 \operatorname{sech}^2 x_n)}$	M1A1	
	$x_{n+1} - x_n - (1 - 2\operatorname{sech}^2 x_n)$		
	$=\frac{x_n - 2x_n \operatorname{sech}^2 x_n - x_n + 2 \tanh x_n}{1 - 2\operatorname{sech}^2 x_n}$	A1	
	$-\frac{1-2\operatorname{sech}^2 x_n}{1-2\operatorname{sech}^2 x_n}$		
	$=\frac{-2x_n+2\sinh x_n\cosh x_n}{\cosh^2 x_n-2}$		
	$\cosh^2 x_n - 2$	A1	
	$=\frac{\sinh 2x_n-2x_n}{\cosh^2 x_n-2}$		
(b)	$\cosh^2 x_n - 2$	A1	
	$x_0 = 2$		
	$x_1 = 1.916216399$		
	$x_2 = 1.915008327$	B1	
	Rounding to three decimal places gives 1.915	B1	
	Let $f(x) = x - 2 \tanh x$		
	$f(1.9155) = 4.1 \times 10^{-4}$	M1	
	$f(1.9145) = -4.2 \times 10^{-4}$		
	The change of sign shows $\alpha = 1.915$ correct 3dp	A1	The values are required
8 (a)	The curve cuts the <i>x</i> -axis where $x = \cosh^{-1} 2 = \alpha$	B1	Seen or implied
0(4)		DI	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\sinh x$	B1	
	$1 + \left(\frac{dy}{dt}\right)^2$ 1 + sim t^2 + so s^2 +	B1	
	$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1 + \sinh^2 x = \cosh^2 x$	DI	
	Arc length = $\int \sqrt{1 + \left(\frac{dy}{dr}\right)^2} dx$	M1	
	$\int \int dx$		
	$=\int_{a}^{a} \cosh x dx$	A1	
		AI	
	$= \left[\sinh x \right]_{-\alpha}^{\alpha}$	A1	
	$= 2\sqrt{3}$ (3.46) cao	A1	
(b)	Curved surface area = $2\pi \int y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$	M1	
	$= 2\pi \int_{0}^{\alpha} (2 - \cosh x) \cosh x dx$	A1	
	$-\alpha$		
	$= 4\pi \int_{-\alpha}^{\alpha} \cosh x dx - \pi \int_{-\alpha}^{\alpha} (\cosh 2x + 1)$	A1	
	$-\alpha - \alpha$		Minus 1 each error
	$= \pi \left[4 \sinh x - \frac{1}{2} \sinh 2x - x \right]_{-\alpha}^{\alpha}$ = $2\pi \left(4\sqrt{3} - 2\sqrt{3} - \cosh^{-1} 2 \right)$	A2	
	$= 2\pi (4\sqrt{3} - 2\sqrt{3} - \cosh^{-1} 2)$	A1	
	=13.5	Al	

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>