GCE AS/A level

WJEC
0979/01

MATHEMATICS FP3 Further Pure Mathematics

P.M. MONDAY, 25 June 2012
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Show that

$$
\begin{equation*}
\int_{0}^{1} x \sinh x \mathrm{~d} x=\frac{1}{\mathrm{e}} . \tag{6}
\end{equation*}
$$

2. Consider the equation

$$
\cosh ^{2} x=\sinh x+k
$$

where k is a constant.
(a) Find the range of values of k for which the equation has no real solution.
(b) Find the positive root of the equation when $k=3$, giving your answer in the form $\ln (a+\sqrt{b})$, where a, b are positive integers.
3. The Taylor series of $\tan ^{-1} x$ about $x=1$ is given by

$$
\tan ^{-1} x=p+q(x-1)+r(x-1)^{2}+s(x-1)^{3}+\ldots
$$

Find the values of the constants p, q, r, s.
4. The curve C_{1} has polar equation

$$
r=2 \cos \theta-\sin \theta \quad\left(0 \leqslant \theta \leqslant \frac{\pi}{4}\right) .
$$

(a) Find the polar coordinates of the point on C_{1} at which the tangent is parallel to the initial line.
(b) The curve C_{2} has polar equation

$$
\begin{equation*}
r=1+\sin \theta \tag{7}
\end{equation*}
$$

Find the polar coordinates of the point of intersection of C_{1} and C_{2}.
5. Use the substitution $t=\tan \left(\frac{x}{2}\right)$ to evaluate

$$
\int_{0}^{\frac{\pi}{2}} \frac{1}{4 \cos x+3} \mathrm{~d} x
$$

Give your answer correct to three significant figures.
6. The integral I_{n} is defined, for $n \geqslant 0$, by

$$
I_{n}=\int_{0}^{\frac{\pi}{2}} \theta^{n} \cos \theta \mathrm{~d} \theta
$$

(a) Show that, for $n \geqslant 2$,

$$
\begin{equation*}
I_{n}=\left(\frac{\pi}{2}\right)^{n}-n(n-1) I_{n-2} \tag{5}
\end{equation*}
$$

(b) (i) Hence evaluate I_{4}, giving your answer correct to three significant figures.
(ii) Deduce the value of

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \theta^{5} \sin \theta \mathrm{~d} \theta \tag{7}
\end{equation*}
$$

7. The equation $x=2 \tanh x$ has a root α between $1 \cdot 5$ and 2 .
(a) Show that the Newton-Raphson iteration to find the value of α can be written in the form

$$
\begin{equation*}
x_{n+1}=\frac{\sinh 2 x_{n}-2 x_{n}}{\cosh ^{2} x_{n}-2} \tag{5}
\end{equation*}
$$

(b) Starting with $x_{0}=2$, write down the values of x_{1} and x_{2} given by your calculator. Show that rounding x_{2} to three decimal places gives the value of α correct to three decimal places.
8.

The diagram shows a sketch of the part of the curve $y=2-\cosh x$ which lies above the x-axis.
(a) Find the total length of the curve shown.
(b) The region enclosed between the curve and the x-axis is rotated through 2π radians about the x-axis. Find the curved surface area of the solid generated, giving your answer correct to three significant figures.

