GCE AS/A level

0976/01

MATHEMATICS C4
 Pure Mathematics

A.M. THURSDAY, 14 June 2012
$11 / 2$ hours

Suitable for Modified Language Candidates

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The function f is defined by

$$
f(x)=\frac{11+x-x^{2}}{(x+1)(x-2)^{2}} .
$$

(a) Express $f(x)$ in terms of partial fractions.
(b) Use your result to part (a) to find the value of $f^{\prime}(0)$.
2. Find the equation of the tangent to the curve

$$
\begin{equation*}
y^{3}-4 x^{2}-3 x y+25=0 \tag{4}
\end{equation*}
$$

at the point $(2,-3)$.
3. (a) Find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying

$$
\begin{equation*}
4 \cos 2 \theta=1-2 \sin \theta \tag{6}
\end{equation*}
$$

(b) (i) Express $8 \sin x+15 \cos x$ in the form $R \sin (x+\alpha)$, where R and α are constants with $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(ii) Find all values of x in the range $0^{\circ} \leqslant x \leqslant 360^{\circ}$ satisfying

$$
8 \sin x+15 \cos x=11
$$

(iii) Find the greatest possible value for k so that

$$
\begin{equation*}
8 \sin x+15 \cos x=k \tag{7}
\end{equation*}
$$

has solutions. Give a reason for your answer.
4. The region R is bounded by the curve $y=\sqrt{x}+\frac{5}{\sqrt{x}}$, the x-axis and the lines $x=3, x=4$.

Find the volume generated when R is rotated through four right-angles about the x-axis. Give your answer correct to the nearest integer.
5. Expand $\left(1+\frac{x}{3}\right)^{-\frac{1}{2}}$ in ascending powers of x up to and including the term in x^{2}. State the range of values of x for which your expansion is valid.
By writing $x=\frac{1}{5}$ in your expansion, find an approximate value for $\sqrt{15}$ in the form $\frac{a}{b}$, where a and b are integers whose values are to be found.
6. The parametric equations of the curve C are $x=t^{2}, y=2 t$.
(a) Show that the normal to C at the point P with parameter p has equation

$$
\begin{equation*}
y+p x=p^{3}+2 p \tag{5}
\end{equation*}
$$

(b) The normal to C at the point P intersects C again at the point with parameter 3 .
(i) Show that $p^{3}-7 p-6=0$.
(ii) Hence show that P can be one of two points. Find the coordinates of each of these two points.
7. (a) Find $\int x \mathrm{e}^{-2 x} \mathrm{~d} x$.
(b) Use the substitution $u=1+3 \ln x$ to evaluate

$$
\begin{equation*}
\int_{1}^{\mathrm{e}} \frac{1}{x(1+3 \ln x)} \mathrm{d} x \tag{4}
\end{equation*}
$$

Give your answer correct to four decimal places.
8. Water is leaking from a hole at the bottom of a large tank. The volume of the water in the tank at time t hours is $V \mathrm{~m}^{3}$. The rate of decrease of V is directly proportional to V^{3}.
(a) Write down a differential equation satisfied by V.
(b) Given that $V=60$ when $t=0$, show that

$$
\begin{equation*}
V^{2}=\frac{3600}{a t+1} \tag{4}
\end{equation*}
$$

where a is a constant.
(c) When $t=2$, the volume of the water in the tank is $50 \mathrm{~m}^{3}$. Find the value of t when the volume of the water in the tank is $27 \mathrm{~m}^{3}$. Give your answer correct to one decimal place.

TURN OVER

9. The position vectors of the points A and B are given by

$$
\begin{aligned}
& \mathbf{a}=4 \mathbf{i}+\mathbf{j}-6 \mathbf{k}, \\
& \mathbf{b}=6 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k},
\end{aligned}
$$

respectively.
(a) Determine whether or not the vectors \mathbf{a} and \mathbf{b} are perpendicular. Give a reason for your answer.
(b) (i) Write down the vector $\mathbf{A B}$.
(ii) Find the vector equation of the line $A B$.
(c) The vector equation of the line L is given by

$$
\mathbf{r}=2 \mathbf{i}+6 \mathbf{j}+p \mathbf{k}+\mu(-2 \mathbf{i}+\mathbf{j}+3 \mathbf{k})
$$

where p is a constant.
Given that the lines $A B$ and L intersect, find the value of p.
10. Complete the following proof by contradiction to show that $\sqrt{5}$ is irrational.

Assume that $\sqrt{5}$ is rational. Then $\sqrt{5}$ may be written in the form $\frac{a}{b}$, where a, b are integers having no common factors.
$\therefore a^{2}=5 b^{2}$.
$\therefore a^{2}$ has a factor 5 .
$\therefore a$ has a factor 5 so that $a=5 k$, where k is an integer.

