GCE AS/A level

977/01

MATHEMATICS FP1

Further Pure Mathematics
P.M. MONDAY, 31 January 2011
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Given that

$$
S_{n}=\left(1^{2} \times 3\right)+\left(2^{2} \times 5\right)+\left(3^{2} \times 7\right)+\ldots+n^{2}(2 n+1),
$$

obtain an expression for S_{n} in terms of n, giving your answer as a product of two linear factors and a quadratic factor.
2. Consider the following equations.

$$
\begin{array}{r}
x+2 y+z=1 \\
2 x+3 y+z=3 \\
3 x+4 y+z=\lambda
\end{array}
$$

Given that these equations are consistent,
(a) find the value of λ,
(b) find the general solution.
3. The complex number z satisfies the equation

$$
\frac{1}{z}-4(1-\mathrm{i})=(2+\mathrm{i})(-1+\mathrm{i})
$$

(a) Find z in the form $x+\mathrm{i} y$.
(b) Find the modulus and argument of z.
4. The roots of the cubic equation

$$
x^{3}-3 x^{2}+2 x+4=0
$$

are denoted by α, β, γ.
(a) Show that

$$
\begin{equation*}
\frac{\beta \gamma}{\alpha}+\frac{\gamma \alpha}{\beta}+\frac{\alpha \beta}{\gamma}=-7 . \tag{5}
\end{equation*}
$$

(b) Find the cubic equation whose roots are $\frac{\beta \gamma}{\alpha}, \frac{\gamma \alpha}{\beta}, \frac{\alpha \beta}{\gamma}$.
5. Use mathematical induction to prove that

$$
\left[\begin{array}{ll}
1 & 1 \tag{7}\\
0 & 2
\end{array}\right]^{n}=\left[\begin{array}{cc}
1 & 2^{n}-1 \\
0 & 2^{n}
\end{array}\right]
$$

for all positive integers n.
6. The matrix \mathbf{A} is given by

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
\lambda & 1 & -2 \\
2 & 1 & \lambda
\end{array}\right]
$$

(a) (i) Find and simplify an expression for the determinant of \mathbf{A}.
(ii) Show that \mathbf{A} is non-singular for all real values of λ.
(b) Given that $\lambda=1$,
(i) find \mathbf{A}^{-1}, the inverse of \mathbf{A},
(ii) hence solve the equation $\mathbf{A X}=\mathbf{B}$,

$$
\text { where } \mathbf{X}=\left[\begin{array}{l}
x \tag{7}\\
y \\
z
\end{array}\right] \quad \text { and } \mathbf{B}=\left[\begin{array}{l}
9 \\
2 \\
7
\end{array}\right]
$$

7. The function f is defined for $x>0$ by

$$
f(x)=2^{x} \times 3^{\frac{1}{x}}
$$

(a) Use logarithmic differentiation to obtain an expression for $f^{\prime}(x)$ in terms of x.
(b) Find the stationary value of $f(x)$ and determine whether it is a maximum or a minimum.
8. The transformation T in the plane consists of a reflection in the line $y-x=0$, followed by a translation in which the point (x, y) is transformed to the point $(x+2, y-1)$, followed by a reflection in the line $y+x=0$.
(a) Show that the matrix representing T is

$$
\left[\begin{array}{ccc}
-1 & 0 & 1 \tag{5}\\
0 & -1 & -2 \\
0 & 0 & 1
\end{array}\right]
$$

(b) Find the coordinates of the fixed point of T.
9. The complex numbers z and w are represented, respectively, by points $P(x, y)$ and $Q(u, v)$ in Argand diagrams and $w=z^{2}$.
(a) Obtain expressions for u and v in terms of x and y.
(b) The point P moves along the curve with equation $y=x^{2}$. Find the equation of the locus of Q, giving your answer in the form $u=f(v)$.
(c) The point $R(\alpha, 16)$ lies on the locus of Q.
(i) Find the value of α.
(ii) Find the coordinates of the point on the locus of P which corresponds to R.

