GCE AS/A level

975/01

MATHEMATICS C3
 Pure Mathematics

P.M. WEDNESDAY, 19 January 2011
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Use Simpson's Rule with five ordinates to find an approximate value for the integral

$$
\int_{4}^{6} \frac{1}{3-\sqrt{x}} \mathrm{~d} x
$$

Show your working and give your answer correct to three decimal places.
2. (a) Show, by counter-example, that the statement

$$
\sec ^{2} \theta \equiv 1-\operatorname{cosec}^{2} \theta
$$

is false.
(b) Find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying

$$
\begin{equation*}
3 \operatorname{cosec}^{2} \theta=11-2 \cot \theta \tag{6}
\end{equation*}
$$

3. (a) Given that

$$
\begin{equation*}
x^{4}+3 x^{2} y-2 y^{2}=15 \tag{4}
\end{equation*}
$$

find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) Given that $x=\ln t, y=t^{3}-7 t$,
(i) find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t,
(ii) find the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ when $t=\frac{1}{3}$.
4. You may assume that the equation $6 x^{4}+7 x-3=0$ has a root α between 0 and 1 .

The recurrence relation

$$
x_{n+1}=\frac{3-6 x_{n}^{4}}{7}
$$

with $x_{0}=0.4$ can be used to find α. Find and record the values of $x_{1}, x_{2}, x_{3}, x_{4}$. Write down the value of x_{4} correct to four decimal places and show this is the value of α correct to four decimal places.
5. (a) Differentiate each of the following with respect to x, simplifying your answer wherever possible.
(i) $\sqrt{2+5 x^{3}}$
(ii) $x^{2} \sin 3 x$
(iii) $\frac{\mathrm{e}^{2 x}}{x^{4}}$
(b) By first writing $y=\tan ^{-1} x$ as $x=\tan y$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x.
6. (a) Find
(i) $\int \cos 4 x d x$,
(ii) $\int 5 \mathrm{e}^{2-3 x} \mathrm{~d} x$,
(iii) $\int \frac{3}{(6 x-7)^{5}} d x$.
(b) Evaluate $\int_{1}^{4} \frac{9}{2 x+5} \mathrm{~d} x$, giving your answer correct to three decimal places.
7. Solve the following.
(a) $5|x|+1=7-3|x|$
(b) $|3 x-1|>5$
8. The diagram shows a sketch of the graph of $y=f(x)$. The graph passes through the points $(-2,0)$ and $(4,0)$ and has a maximum point at $(1,3)$.

Sketch the graph of $y=-3 f(x+2)$, indicating the coordinates of the stationary point and the coordinates of the points of intersection of the graph with the x-axis.
9. The function f has domain $(-\infty,-1]$ and is defined by

$$
f(x)=4 x^{2}-3
$$

(a) Write down the range of f.
(b) Find an expression for $f^{-1}(x)$ and write down the range and domain of f^{-1}.
(c) (i) Evaluate $f^{-1}(6)$.
(ii) By carrying out an appropriate calculation involving f, verify that your answer to part (i) is correct.
10. The functions f and g have domains $[0, \infty)$ and $(-\infty, \infty)$ respectively and are defined by

$$
\begin{aligned}
& f(x)=\mathrm{e}^{x} \\
& g(x)=4 x^{3}+7 .
\end{aligned}
$$

(a) Find and simplify an expression for $g f(x)$.
(b) Find the domain and range of $g f$.
(c) (i) Solve the equation $g f(x)=18$. Give your answer correct to three decimal places.
(ii) Giving a reason, write down a value for k so that $g f(x)=k$ has no solution.

