GCE AS/A level

WJEC CBAC

981/01

MATHEMATICS M2
 Mechanics 2

A.M. MONDAY, 13 June 2011
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Take g as $9.8 \mathrm{~ms}^{-2}$.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. A particle moves along the x-axis and its velocity $v \mathrm{~ms}^{-1}$ at time $t \mathrm{~s}$ is given by

$$
\begin{equation*}
v=12 \sin 3 t-8 \cos 2 t . \tag{3}
\end{equation*}
$$

(a) Find an expression for the acceleration of the particle at time $t \mathrm{~s}$.
(b) Given that at time $t=0$ the particle is at the origin O, find an expression for the displacement of the particle from O at time $t \mathrm{~s}$.
2. A particle of mass 0.5 kg is attached to one end of a light inextensible string of length 0.6 m . The other end of the string is fixed at a point O on a smooth horizontal surface. The particle moves on the surface in a circle with centre O, so that the string is taut and the angular velocity of the particle about O is 5 radians per second.
(a) Calculate the speed of the particle.
(b) Find the tension in the string.
3. A particle P, of mass 2 kg , is moving under the action of a force $\mathbf{F} \mathbf{N}$ so that its velocity $\mathbf{v}_{\mathrm{ms}}{ }^{-1}$ at time $t \mathrm{~s}$ is given by

$$
\begin{equation*}
\mathbf{v}=2 \mathbf{i}+6 t \mathbf{j}+4 t^{3} \mathbf{k} \tag{3}
\end{equation*}
$$

(a) Find an expression for \mathbf{F} at time $t \mathrm{~s}$.
(b) Determine the value of $\mathbf{F . v}$ when $t=1$ and state the units of your answer.
4. A car of mass 800 kg is travelling against a constant resistance to motion of 540 N .
(a) Find the power of the engine when the car is travelling on a level racing track at a constant speed of $60 \mathrm{~ms}^{-1}$.
(b) With the engine working at 32.4 kW and the resistance to motion unchanged, the car ascends a hill inclined at an angle α to the horizontal where $\sin \alpha=\frac{1}{16}$.
Find the acceleration of the car when its velocity is $15 \mathrm{~ms}^{-1}$.
5. A light elastic string, of natural length 1.6 m and modulus of elasticity 80 N , has one end attached to a fixed point A and the other end attached to a particle P, of mass 4 kg . Initially, P is held at a point 0.5 m vertically below the point A. The particle P is released from rest and allowed to fall.
(a) Calculate the tension in the string when the length of the string is 2 m .
(b) Determine the speed of P when the length of the string is 2 m .
6. A stone is thrown from the top of a vertical cliff, 100 m above sea level. The initial velocity of the stone is $6.5 \mathrm{~ms}^{-1}$ at an angle α above the horizontal, where $\tan \alpha=\frac{5}{12}$.
(a) Find the time taken for the stone to reach the sea. Give your answer correct to two decimal places.
(b) Calculate the horizontal distance from the bottom of the cliff to the point where the stone hits the sea.
(c) Calculate the magnitude and direction of the velocity with which the stone hits the sea.
7. At time t, the position vectors relative to a fixed origin O, of two particles A and B are given by $\mathbf{O A}=2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}+t(2 \mathbf{i}-6 \mathbf{j}+9 \mathbf{k})$ and $\mathbf{O B}=5 \mathbf{i}-8 \mathbf{j}+10 \mathbf{k}+t(3 \mathbf{i}-6 \mathbf{j}+7 \mathbf{k})$.
(a) Find the speed of particle A.
(b) Show that the distance $A B$ at time t is given by $A B^{2}=5 t^{2}-30 t+211$. Determine the time at which the particles A and B are closest together.
8. The diagram shows a particle P, of mass 3 kg , attached by a light inextensible string of length 0.4 m to a fixed point O. Initially, P is projected from the point A, which is vertically below O, with a horizontal speed of $4 \mathrm{~ms}^{-1}$.

(a) The speed of P when $O P$ makes an angle θ with $O A$ is $v \mathrm{~ms}^{-1}$.

Show that $v^{2}=8 \cdot 16+7 \cdot 84 \cos \theta$.
(b) Find an expression, in terms of θ, for the tension in the string when $O P$ makes an angle θ with $O A$.
(c) Determine whether or not P describes complete circles.
(d) Would your conclusion to (c) be different if the string was replaced by a light rigid rod? Justify your answer.

