GCE AS/A level

979/01

MATHEMATICS FP3
 Further Pure Mathematics

P.M. FRIDAY, 24 June 2011
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Find the positive root of the equation

$$
\begin{equation*}
3 \tanh ^{2} \theta=5 \operatorname{sech} \theta+1 \tag{8}
\end{equation*}
$$

giving your answer in the form $\ln (a+\sqrt{b})$, where a, b are positive integers.
2. Use the substitution $t=\tan \frac{x}{2}$ to show that

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \frac{1}{2+\sin x} \mathrm{~d} x=\frac{\pi}{3 \sqrt{3}} \tag{8}
\end{equation*}
$$

3. Show that the length of the arc joining the points $(2 a, 2 a)$ and $(4 a, 2 \sqrt{3} a)$ on the curve with equation $y^{2}=4 a(x-a)$ is given by the integral

$$
\int_{2 a}^{4 a} \sqrt{\frac{x}{x-a}} \mathrm{~d} x
$$

Hence evaluate this length using the substitution $x=a \cosh ^{2} u$. Give your answer in the form $k a$ where k should be evaluated correct to three significant figures.
4. The function f is defined by

$$
f(x)=\mathrm{e}^{x} \cos x
$$

(a) Show that

$$
\begin{equation*}
f^{\prime \prime}(x)=-2 \mathrm{e}^{x} \sin x \tag{2}
\end{equation*}
$$

(b) Determine the Maclaurin series for $f(x)$ as far as the term in x^{4}.
(c) By differentiating your series, determine the Maclaurin series for $\mathrm{e}^{x} \sin x$ as far as the term in x^{3}.
5. Consider the equation $x \sin x-0 \cdot 5=0$.
(a) Show that this equation has a root α between 0.6 and $0 \cdot 8$.
(b) (i) Show that the Newton-Raphson iteration to find the value of α can be written in the form

$$
x_{n+1}=\frac{x_{n}^{2} \cos x_{n}+0 \cdot 5}{x_{n} \cos x_{n}+\sin x_{n}} .
$$

(ii) Starting with $x_{0}=0 \cdot 7$, find the value of α correct to five decimal places.
(c) A rearrangement of the equation leads to the iterative sequence

$$
x_{n+1}=f\left(x_{n}\right) \text { where } f(x)=\sin ^{-1}\left(\frac{0 \cdot 5}{x}\right) .
$$

(i) Obtain an expression for $f^{\prime}(x)$.
(ii) Hence determine whether or not the sequence can be used to find the value of α.
6.

The above diagram shows a sketch of the curve C with polar equation

$$
r=\sin 2 \theta, \quad 0 \leqslant \theta \leqslant \frac{\pi}{2} .
$$

The point P, marked on the diagram, is the point at which the tangent to C is parallel to the initial line.
(a) Determine the area of the region enclosed by C.
(b) Find the polar coordinates of the point P.
7. The integral I_{n} is defined, for $n \geqslant 0$, by

$$
I_{n}=\int_{0}^{a} \tanh ^{n} x \mathrm{~d} x
$$

where $a=\tanh ^{-1} 0 \cdot 5$.
(a) Show that, for $n \geqslant 2$,

$$
\begin{equation*}
I_{n}=I_{n-2}-\frac{0 \cdot 5^{n-1}}{n-1} \tag{5}
\end{equation*}
$$

(b) Giving your answers correct to three significant figures, evaluate
(i) I_{0},
(ii) I_{4}.

