GCE AS/A level

978/01

MATHEMATICS FP2
 Further Pure Mathematics

A.M. WEDNESDAY, 22 June 2011
$1 \frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Using the substitution $u=\sqrt{x}$, evaluate the integral

$$
\int_{1}^{4} \frac{1}{(9+x) \sqrt{x}} \mathrm{~d} x .
$$

Give your answer correct to four decimal places.
2. Find the general solution to the equation

$$
\begin{equation*}
\cos \theta+\cos 3 \theta+\cos 5 \theta=0 \tag{7}
\end{equation*}
$$

3. The piecewise function f is defined by

$$
\begin{array}{ll}
f(x)=-x^{2}+6 x-7 & (x \leqslant 2) \\
f(x)=x^{2}-2 x+4 & (x>2)
\end{array}
$$

(a) Determine whether or not f is continuous for all values of x.
(b) Determine whether or not f is a strictly increasing function.
(c) The interval $[1,3]$ is denoted by A. Determine $f(A)$.
4. Given that $z=-1+\mathrm{i}$,
(a) find the modulus and argument of z,
(b) find the three cube roots of z in the form $x+\mathrm{i} y$, giving x and y correct to three decimal places,
(c) find the smallest positive integer n for which z^{n} is a positive real number.
5. (a) Given that $z=\cos \theta+\mathrm{i} \sin \theta$, show that

$$
z^{n}-\frac{1}{z^{n}}=2 \mathrm{i} \sin n \theta
$$

and find a similar expression for $z^{n}+\frac{1}{z^{n}}$.
(b) Hence by expanding $\left(z-\frac{1}{z}\right)^{4}$, show that

$$
\sin ^{4} \theta=a \cos 4 \theta+b \cos 2 \theta+c
$$

where a, b, c are constants whose values should be determined.
6. The ellipse E has equation

$$
2 x^{2}+3 y^{2}-4 x+12 y+8=0 .
$$

Find
(a) the coordinates of the centre of E,
(b) the eccentricity of E,
(c) the coordinates of the foci of E,
(d) the equations of the directrices of E.
7. (a) Differentiate the following integral with respect to x.

$$
\begin{equation*}
\int_{0}^{x} \sin \left(\mathrm{e}^{t}\right) \mathrm{d} t \tag{1}
\end{equation*}
$$

(b) By putting $u=x^{2}$ and using the chain rule, differentiate the following integral with respect to x.

$$
\begin{equation*}
\int_{0}^{x^{2}} \sin \left(\mathrm{e}^{t}\right) \mathrm{d} t \tag{2}
\end{equation*}
$$

8. The function f is defined by

$$
f(x)=\frac{(x+1)^{2}}{(x-1)(x-2)}
$$

(a) Prove that $f(x)$ can be written in the form

$$
1-\frac{4}{x-1}+\frac{9}{x-2} .
$$

Hence find expressions for $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(b) Find the coordinates of the stationary points on the graph of f and classify each point as a maximum or minimum.
(c) State the equation of each of the asymptotes on the graph of f.
(d) Sketch the graph of f.

